
MagHacker: Eavesdropping on Stylus Pen Writing via Magnetic
Sensing from Commodity Mobile Devices

Yihao Liu, Kai Huang, Xingzhe Song, Boyuan Yang and Wei Gao
University of Pittsburgh

ABSTRACT

Stylus pens have been widely used with today’s mobile devices to
provide a convenient handwriting input method, but also bring a
unique security vulnerability that may unveil the user’s handwrit-
ing contents to a nearby eavesdropper. In this paper, we present
MagHacker, a new sensing system that realizes such eavesdrop-
ping attack over commodity mobile devices, which monitor and
analyze the magnetic field being produced by the stylus pen’s in-
ternal magnet. MagHacker divides the continuous magnetometer
readings into small segments that represent individual letters, and
then translates these readings into writing trajectories for letter
recognition. Experiment results over realistic handwritings from
multiple human beings demonstrate that MagHacker can accurately
eavesdrop more than 80% of handwriting with stylus pens, from a
distance of 10cm. Only slight degradation in such accuracy is pro-
duced when the eavesdropping distance or the handwriting speed
increases. MagHacker is highly energy efficient, and can well adapt
to different stylus pen models and environmental contexts.
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1 INTRODUCTION

In recent years, stylus pens have emerged as an important accessory
to many mobile devices, including laptop computers, tablets and
smartphones. As shown in Figure 1, a stylus pen can be used for
handwriting on the LCD touchscreen as an efficient input method
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Figure 1: Evaesdropping on stylus pen writing

in many scenarios, such as quick notes, art design, business demon-
stration and emerging edge computing applications [29, 36]. Com-
mercial stylus pens, such as Microsoft Surface pen [3], are equipped
with internal magnets and can be attached to the metal shell of
mobile devices for good mobility.

However, using stylus pens may also bring potential security
vulnerability, which allows an attacker to eavesdrop on handwriting
inputs. The basic rationale of such vulnerability, as shown in Figure
1, is that the movement of stylus pen’s internal magnet changes
the nearby magnetic field. This change could be captured by a
magnetometer and analyzed to infer the handwriting. Compared to
existing methods of eavesdropping attacks that retrieve and analyze
the IMU data from the victim’s on-body devices [22, 37], this new
attack can be reliably launched from remote without compromising
the victim’s personal mobile devices.

The unique characteristics of digital magnetometers, on the other
hand, significantly reduce the difficulty of launching such attack in
practice. First, the magnetic field is known to be consistent against
most types of environmental dynamics. Hence, being different from
current eavesdropping attacks that either capture the audible sound
of handwriting [15, 16, 42] or the handwriting’s disturbance to wire-
less signals [28, 41, 44], the magnetic-based attack can effectively
resist against the impact of ambient noise, multipath effects and
nearby moving objects, ensuring high accuracy in eavesdropping.
Second, the low cost, small form factor and low power consump-
tion of digital magnetometer lead to its wide availability on today’s
smartphones and wearables (e.g., wristbands and smartwatches).
An attacker can then easily conceal the eavesdropping device even
being very close to the victim, without requiring line of sight on
the attacker as current camera attacks do [13, 23, 24, 34].

In this paper, we present MagHacker, a new sensing system
that realizes such eavesdropping attack, which assumes that the
victim writes in English and aims to recognize each individual
English letter of his/her handwriting from distance. Being different
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Accuracy Environment Hardware Concealment Attack Response
adaptability cost distance delay

IMU sensing [22, 37] Low Low Low None None Low
Audio capture [15, 16, 42] Low Very Low Medium Medium Medium Medium
Camera capture [13, 23, 24, 34] High Medium High Very Low Low Very High
Wireless sensing [28, 41, 44] High Low Very High High Medium High
Magnetic sensing [11, 12, 32, 40] Medium High High Medium Low Medium

MagHacker High Very High None Very High Medium Low

Table 1: Comparison of the approaches to eavesdropping on handwriting

from existing work on magnetic sensing that uses multiple custom
magnetometers to track the magnet’s 3D position [11, 12, 32, 40],
MagHacker only uses the readings from a single magnetometer on
the commodity mobile device operated by the attacker, and requires
no extra hardware.

To ensure accuracy, MagHacker divides the continuous magne-
tometer readings into small segments, each of which corresponds
to a letter being written and is individually recognized. This seg-
mentation, however, is challenging because of the heterogeneous
efforts to write different letters1, which make it hard to estimate
the duration of writing each letter. Instead, MagHacker exploits
the fluctuation of humans’ speed of hand movement in writing,
which changes less frequently in transition between letters [27, 31].
MagHacker calculates the victim’s speed of hand movement from
magnetometer readings and applies ContinuousWavelet Transform
(CWT) to the time series data of movement speed. The produced
spectrogram, then, represents the frequency of speed changes and
can be used for segmentation.

The readings from digital magnetometers, on the other hand, are
given in form of 3D magnetic field strengths and may not directly
reflect the handwriting trajectory (i.e., the movement of magnet
in stylus pen). In particular, the correspondence between magne-
tometer readings and magnet movement depends on the relative
positioning between the magnetometer and the magnet, and is
non-linear in most cases. MagHacker addresses this challenge with
coordinate projection and transformation: the 3D magnetometer
readings of each handwritten word is first projected to a 2D plane
with the minimum distortion, and the 2D magnetometer readings
of each letter in the word are then separately transformed to the
magnet’s coordinate system. Afterward such projection and trans-
formation, the magnetometer readings represent the handwriting
trajectories and are applied to a Convolutional Neural Network
(CNN) classifier for recognition.

To the best of our knowledge, MagHacker is the first work that
uses a single magnetometer on commodity mobile devices to eaves-
drop on humans’ handwriting. It widely applies to different types of
mobile devices ranging from smartphones to digital wearables, and
unveils an important security vulnerability that may potentially
leak mobile users’ personal sensitive information at very low at-
tacking costs. For example, people’s personal communication with
others may be exposed to a nearby attacker, and the leakage of

1Writing different English letters involves different numbers of strokes. For example,
some simple letters like ‘c’ only involve one stroke but others like ‘m’ and ‘w’ involve
three or more strokes.

important credentials could be vital to the victim’s personal and
financial safety. Our detailed technical contributions are as follows.

• We quantitatively investigated different frequency compo-
nents on the CWT spectrogram to ensure appropriate seg-
mentation of magnetometer readings, and effectively re-
moved the impact of humans’ heterogeneous hand motions
and writing speeds.

• We minimized the distortion of handwriting trajectories
being translated from magnetometer readings, by adapting
the coordinate projection and transformation to the unique
condition of each handwritten letter.

• We incorporated the humans’ heterogeneous handwriting
patterns and habits into account when designing the CNN
classifier for letter recognition, and effectively prevented the
classifier from overfitting by augmenting the training data.

We have implemented and tested MagHacker over a wide collec-
tion of commodity mobile devices (e.g., Apple iPhone Xs and Google
Pixel 2 XL smartphones) and stylus pen products (e.g., Microsoft
Surface Pen, Adonit Snap 2 Pen and Maglus Pen), and evaluated
the eavesdropping performance of MagHacker with five student
volunteers who handwrote all the possible combinations and tran-
sitions of English letters. From our experiment results, we have the
following conclusions:

• MagHacker is highly accurate. MagHacker can correctly rec-
ognize more than 80% of lowercase and uppercase letters
being written by all experiment participants, with different
writing patterns and habits.

• MagHacker is highly adaptive. MagHacker can well adapt
to the heterogeneous writing speeds of humans, and can
achieve good accuracy of eavesdropping over different sty-
lus pen models. It can also retain the accuracy of eavesdrop-
ping in different environmental conditions, even with nearby
metal objects.

• MagHacker is widely applicable. MagHacker allows the at-
tacker to effectively eavesdrop within the physical proximity
of the victim, and achieve good accuracy with an eavesdrop-
ping distance up to 20cm. It also incurs the minimum power
consumption on the attacking device and hence allows sev-
eral hours of continuous eavesdropping.

2 BACKGROUND AND DESIGN CHALLENGES

To better understand the design of MagHacker, we first describe the
threat model and technical background of magnetic sensing. We
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Figure 2: Magnetic sensing

then motivate our design by demonstrating the technical challenges
raised by the characteristics of magnetic sensing.

2.1 Threat Model

MagHacker considers that an attacker uses a mobile device with
digital magnetometer to eavesdrop in the physical proximity of
victim. The attacking device is well concealed, so that the victim is
unaware of eavesdropping even if the attacking device is in his/her
line of sight. In practice, such concealment can be achieved by
running a background process at the attacking device that retrieves
and analyzes magnetometer readings without any screen display.

MagHacker does not require the attacker to compromise the vic-
tim’s device, nor to physically contact the victim’s body, stylus pen
or the writing surface. We assume that the attacker has line of sight
to the victim and can monitor the victim’s body movement. Such
knowledge about the victim’s body movement is far from sufficient
to derive the victim’s handwriting, but allows the attacker to tell
when the victim starts and stops handwriting with the stylus pen.
The attacker can then remotely start and stop the eavesdropping
accordingly, without physically touching the eavesdropping device
and impairing the attacker’s concealment.

2.2 Magnetic Sensing

Digital magnetometers on commodity mobile devices (e.g., smart-
phones and smartwatches) can produce readings with a high sam-
pling rate of 100Hz, which is sufficient to capture the magnet’s
subtle movements. Figure 2 illustrates how the magnetic field em-
anated from a magnet is being sensed by a magnetometer, in the
magnet’s coordinate systemwhere the magnet stands at (0, 0). Since
the magnet in the stylus pen is usually a bar magnet, its emanated
magnetic field is symmetric about its Y axis and has zero strength
at the Z axis. Hence, without loss of generality, we project the mag-
netometer’s position to the magnet’s X-Y plane as (xm ,ym ). Then,
the magnetic field at (xm ,ym ) can be decomposed into tangential
and radial components as{

Brm =
μ0Mcosθ

2πr 3
=

μ0Mrcosθ

2πr 4
=

μ0M

2πr 4
ym

Bθm =
μ0Msinθ

4πr 3
=

μ0Mrsinθ

4πr 4
=

μ0M

4πr 4
xm ,

(1)

where r =
√
x2m + y

2
m is the distance between the magnet and

the magnetometer, and θ is the magnetometer’s orientation with
respect to themagnet’s north pole.M is themagneticmoment that is
usually constant for permanent magnets [25]. μ0 is the permeability
constant.

(a) Different persons on the same letter (b) One person writing different letters

Figure 3: Cumulative distribution functions (CDFs) of dura-

tions of writing different letters

magnetometer

6cmwriting 
trajectory

6cm

A

B

(a) Experiment setup (b) Reading from device A (c) Reading from device B

Figure 4: Magnetometer readings

Themagnetometer’s readings about the 3Dmagnetic field strengths,
as [Bx ,By ,Bz ], are produced in the magnetometer’s local coordi-
nate system. They can be converted to the quantities in Eq. (1) via
coordinate transformation as

[Brm ,Bθm , 0]
′ = T · [Bx ,By ,Bz ]

′, (2)

whereT is the transformationmatrix that is determined by the Euler
angle between the magnetometer’s and the magnet’s coordinate
systems.

2.3 Design Challenges

To divide the continuous magnetometer readings into segments
that correspond to individual letters, one intuitive solution is to
use the duration of writing individual letters. To investigate such
writing durations in practice, we monitored four graduate student
volunteers to hand write 27 times of the 26 uppercase English letters.
The distributions of writing durations, as shown in Figure 3, are
highly heterogeneous with >70% variation: one may spend different
amounts of time towrite the same letter, and different people exhibit
different paces when writing the same letter. Such heterogeneity,
then, motivates us to seek for other reliable characteristics in the
magnetometer readings for segmentation.

After segmentation, the major challenge of eavesdropping is how
to convert the magnetometer readings to the trajectory of magnet’s
movement, because the magnetometer readings are jointly deter-
mined by the position and orientation of both the magnetometer
and the magnet of stylus pen. The same magnet’s movement, hence,
may result in different magnetometer readings. To demonstrate
such difference, we conducted a preliminary experiment, as shown
in Figure 4(a), to draw a straight line using a Microsoft Surface
pen and sense the magnet’s movement with two magnetometers
in different orientations. The magnetometer readings, as shown in
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Figure 5: Overall design of MagHacker

Figure 4(b) and 4(c), are highly different from each other. In particu-
lar, the magnetometer readings from device A is also distorted from
a straight line, because the angle between A’s magnetometer and
the magnet’s north pole (θ in Figure 2) keeps changing and results
non-linear fluctuations of magnetic field. MagHacker addresses this
challenge by investigating appropriate coordinate transformations
between the magnetometer’s and the magnet’s coordinate systems.

3 MAGHACKER DESIGN

As illustrated in Figure 5, MagHacker first divides the continuous
3D magnetometer readings into small segments, each of which
corresponds to a letter being written. Afterwards, it individually
translates the magnetometer readings for each letter to the cor-
responding handwriting trajectory via projection and coordinate
transformation, to remove the distortions in the raw magnetometer
readings. Such trajectory, then, is sent to a CNN classifier to be
recognized.

3.1 Segmenting Magnetometer Readings

MagHacker segments the continuous magnetometer readings in
two steps: first, it counts the number of letters and roughly locates
each letter in the time series of magnetometer readings; then, it uses
such rough knowledge about each letter to identify the boundaries
of the corresponding segment of magnetometer readings. As shown
in Figure 6(a), such segmentation builds on the fact that the speed
of human’s hand movement in writing increases in continuous
strikes and decreases in turning points [27]. Since each English let-
ter contains multiple strokes, the speed of hand movement changes
more frequently when writing letters, but exhibits fewer changes
in transition between letters and words.

To correctlymeasure heterogeneous frequencies of speed changes,
for time series of magnetometer readings (Bx (t),By (t),Bz (t)), we
first compute its changing speed as

v2t =(Bx (t + 1) − Bx (t))
2 + (By (t + 1) − By (t))

2

+ (Bz (t + 1) − Bz (t))
2,

and then apply Continuous Wavelet Transform (CWT)2 on the time
series of {vt }. From the spectrogram produced by CWT, let xf t

2Although Short Time Fourier Transform(STFT) can analyze such speed changes over
time, its performance depends on the choice of time window. However, using a fixed
time window cannot analyze letters with heterogeneous writing durations. Instead,

indicate the amplitude of its frequency component f at time t , we
can compute the mean amplitude of all its N different frequency
components as

μt =
∑fmax

f =fmin
xf t /N ,

and each peak in the time series of {μt } corresponds to a segment
with highly frequent speed changes that indicates a different letter.
The valleys of {μt }, on the other hand, separate between letters
and words. For example, the spectrogram corresponding to the
handwriting of two words ‘NO’ and ‘WAY’, as shown in Figure 6(b),
exhibits obvious separation between letters and the two words. The
mean amplitudes, furthermore, exhibit 5 peaks as shown in Figure
6(c).

Since each letter is located by a peak of {μt }, an intuitive idea is
to use the valleys of {μt } as boundaries of segments, as shown in
Figure 6(c). This approach, however, may be ineffective in practice,
because of the ignorance of transiting period between letters. In-
stead, more appropriate boundaries of each letter segment should
be in the middle between each peak and valley of {μt }. Details of
deciding such boundaries will be described in Section 4.

3.2 Translation into Writing Trajectories

After segmentation, MagHacker projects the 3D magnetometer
readings of each handwritten word onto a 2D plane, and then trans-
lates the segment of each letter in this word to the handwriting
trajectory. An intuitive approach is to project to the Bx − By plane
in the magnetometer’s coordinate system, but may largely distort
the produced handwriting trajectory due to the inconsistency be-
tween magnetometer readings and magnet’s movement as shown
in Section 2.3. For example, when the 3D magnetometer readings
in Figure 7(a) are projected to the Bx − By plane, the projected
trajectories can be hardly recognizable as shown in Figure 7(b).

Instead, our approach, as shown in Figure 7(a), is to choose the
topmost (with the maximum By ), bottommost (with the minimum
By ), leftmost (with the minimum Bx ) and rightmost (with the maxi-
mum Bx ) points (P1, P2, P3, P4) on 3D magnetometer readings, and

use the 2D plane defined by vectors
−−−−−−→
(P1, P2) and

−−−−−−→
(P3, P4) for projec-

tion. Since this plane intersects with most of the 3D magnetometer
readings, using it for projection significantly reduces the distortion
as shown in Figure 7(c).

The major challenge of translating the 2D magnetometer read-
ings of an individual letter, as shown in Figure 7(c), is that the
centroids of different letters (indicated by the red dots) in the word
form a curvy line, even though humans usually write each word
along a straight line. Such distortion is caused by the non-linear
correspondence between the magnetometer readings and magnet’s
movement as shown in Section 2.3, and requests for different coor-
dinate transformations to be applied to different letters. Details of
such coordinate transformation will be described in Section 5.

4 DECIDING LETTER BOUNDARIES

An intuitive approach to deciding the boundaries of magnetome-
ter readings for different letters is to find the highest gradient
among different frequency components in the CWT spectrogram.

CWT provides better flexibility on the time scale of frequency-domain analysis through
its scaling factor [18].
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(a) Speed of hand movement while writing two letters ‘MA’ (b) CWT spectrogram of magnetoemter readings for two
words ‘NO’ and ‘WAY’

(c) Mean amplitude of different frequency components
in the CWT spectrogram

Figure 6: Segmentation of magnetometer readings

(a) 3D magnetometer readings of ‘ABOUT’ (b) 2D projection onto the Bx − By plane
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(c) 2D projection in MagHacker

Figure 7: Translating the magnetometer readings of a word into handwriting trajectories

As shown in Figure 8(a), such highest gradients are mostly found
when starting and finishing writing letters, due to the sudden
change in the speed of hand movement. However, such gradient-
based approach may be inaccurate in some cases, because the high-
est gradient only corresponds to a single frequency component
in the CWT spectrogram. The produced boundaries, as shown in
Figure 8(a), are hard to be converted to specific time points.

Instead, as shown in Figure 8(b), MagHacker addresses this prob-
lem by investigating the mean amplitudes of different frequency
components in the CWT spectrogram, and decides letter boundaries
as the point with the highest derivative over time. More specifically,
the average writing frequency of humans is 68 letters per minute
[9], and each letter has 2-5 strokes. Thus in practice, we calculate
such mean amplitudes over frequency components between 1.5Hz
and 10Hz in the CWT spectrogram. The highest derivative after
each valley of mean amplitudes can be considered as the starting
point of writing the next letter, and such before each valley of mean
amplitudes is the ending point of the previous letter.

4.1 Removing Humans’ Hand Motion

In some cases, humans’ hand will have extra motions when tran-
siting between writing different letters: after completion of the
previous letter, the writer’s hand will lift up the pen and move hor-
izontally before pinning down to the writing surface for the next
letter. As a result, as shown in Figure 8(c), the highest derivative

is usually found in the period of hand motion due to the intense
change in the speed of hand movement, and involves irrelevant
magnetometer readings of hand motion into the segmented writing
trajectories.

To solve this problem, we will detect such time periods of hand
motions with a threshold. If the speed of hand movement at the
highest derivative is higher than this threshold, the hand motion is
detected. For example in Figure 8(c), the highest derivative at H2 is
found to be during hand motion. The valley points before and after
H2, namely A and B, are then detected as the starting and ending
points of such hand motion, and B is used as the start of the next
letter instead of H2. The magnetometer readings during such hand
motions (indicated in red as shown in Figure 8(d)), on the other
hand, are removed from segmentation and letter recognition.

4.2 Heterogeneity of Writing Speeds

As shown in Section 2.3, durations of writing different letters are
usually heterogeneous. On the mean amplitudes of CWT frequency
components over time, a letter written with a longer duration cor-
responds to a deeper valley and wider peak, as shown in Figure 9.
Therefore, when people are writing fast and cursively, the valleys
will be too shallow to be recognized. We will further investigate
the impact of such heterogeneous writing speeds on MagHacker’s
letter segmentation in Section 7.5.
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(a) CWT spectrogram of letters ‘O’ and ‘U’ (b) Mean amplitudes of frequency compo-
nents

(c) Humans’ hand motion between letters (d) Removal of hand motions

Figure 8: Deciding letter boundaries

(a) Duration of writing letters (b) Mean amplitudes of frequency compo-
nents

Figure 9: Writing speeds in the word “COULD”

5 COORDINATE TRANSFORMATION

In practice, humans usually write letters in each word along a
straight line from left to right. Without loss of generality, we con-
sider this straight line of writing direction as the x-axis in the
magnet’s coordinate system. Our objective of coordinate trans-
formation, then, is to restore the distorted coordinates of letter
centroids in the same word, as shown in Figure 7(c) after projection,
back to this straight line. Our basic approach, as shown in Figure
10(a), is to fit the distorted letter centroids in a word into an arc
[39], and then transform each letter along the tangential direction
of its centroid (indicated as red arrows) on the arc.

Distorted wri ng direc on

(a) Transformation approach (b) Trajectories after transformation

Figure 10: Coordinate transformations

In this way, for each 2D magnetometer reading (x ,y) of a letter,
its transformation will be{

xnew = xcosθ − ysinθ

ynew = xsinθ + ycosθ ,
(3)

where (xnew ,ynew ) are the coordinates after transformation, and
θ is the angle between the letter centroid’s tangential direction and
the x-axis in the magnet’s coordinate system. For the magnetome-
ter readings shown in Figure 10(a), the writing trajectories after
transformation are shown in Figure 10(b) and visibly recognizable.

Lowercase Uppercase Percentage
Same ‘o’,‘r’,‘v’,‘w’ ‘M’,‘O’,‘V’,‘W’ 15.4%
Lower ‘i’,‘j’ ‘A’,‘N’ 7.7%
Higher others others 79.8%

Table 2: The height of the letter’s start point compared to

the letter’s end point

5.1 Flipping Writing Trajectories

After rotation, the letters might be upside down. MagHacker detects
these cases and vertically flips the letters’ writing trajectories as
necessary, according to the height difference between the start point
and end point of the letter’s writing trajectory in the 2D plane. As
shown in Table 2, most letters are written from top to bottom, and
their start points will be at a higher position. For the other 20% of
letters, most letters such as "O" and "i" can still be recognized even
if they are upside down.

5.2 Impact of Magnet’s Orientation

In handwriting, different humans tend to hold their pens with differ-
ent orientations. The magnetometer readings, in this case, could be
different because of the changes on the magnet’s coordinate system.
For example, Figure 11(a) shows the 3D magnetometer readings
of writing the same word ‘ABOUT’ with a stylus pen orientation
that has 120 degrees of difference from that in Figure 10. Never-
theless, the coordinate transformation approach in MagHacker can
effectively remove such impact of different orientations, because
different orientations of the pen only impact the rotation of magne-
tometer reading from the magnetometer’s coordinate system to the
magnet’s coordinate system. Since different letters in a word are
always being transformed back to a straight line along the x-axis
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(a) Reading with a different pen orientation (b) Transformed writing trajectories

Figure 11: Impact of stylus pen’s orientation

in the magnetometer’s coordinate system, MagHacker can produce
similar writing trajectories for letters being written with different
pen orientations. For example, the transformed writing trajectories
from the magnetometer readings in Figure 11(a), as shown in Figure
11(b), are very similar to the trajectories in Figure 10(b).

5.3 Varying Distances from Magnetometer

Whenwriting multiple letters, the distance between the magnet and
the magnetometer constantly varies. The magnetic field’s strength
at the magnetometer, hence, keeps changing and results in different
contour sizes of letters’ writing trajectories. For example as shown
in Figure 12, if we write towards the magnetometer, the contour
size of letters grows bigger. Otherwise, such size becomes smaller.
To prevent such heterogeneity of contour sizes from affecting the
accuracy of letter recognition, we scale them to the same size before
letter recognition. For each point (xi ,yi ) on the letter’s writing
trajectory, the scaling equation is{

x ′i = (xi − xmin)/(xmax − xmin)

y′i = (yi − ymin)/(ymax − ymin),

where xmin and xmax are the minimum and maximum X-axis coor-
dinates on the trajectory, and ymin and ymax are similarly defined.

6 LETTER RECOGNITION

MagHacker applies the writing trajectories of individual letters
to a CNN classifier to recognize these letters. One intuitive ap-
proach to training the CNN classifier is to use the handwriting
samples produced by the attackers3, but may easily overfit the
trained CNN model due to the limited amount of training data.
Instead, MagHacker augments the training data by incorporating
1) the printed letters with different fonts and 2) online datasets of
handwritten letter images [4].

6.1 CNN Classifier Design

Being different from existing work that uses the time series data
to train the classifier [37, 42], MagHacker converts the writing
trajectory of each letter into a thumbnail image and then uses
these images to train the CNN classifier. In this way, MagHacker
can efficiently resist again the impact of humans’ heterogeneous
writing habits in practice. For example, some people use to write
the letter ‘O’ clockwise and some others prefer to write ‘O’ counter-
clockwise. Although the two cases produce the same thumbnail

3We assume that multiple attackers could collude to contribute such training data.

Magnetometermeter

Figure 12: Different contour sizes of letters

images of writing trajectory, they correspond to totally different
time series of magnetometer readings. Similarly, different people
tend to write some letters with different sequences of strokes, such
as ‘E’ and ‘F’.

Figure 13: CNN classifier in MagHacker

Our CNN classifier design is shown in Figure 13. Following the
specification in the MNIST dataset [26], we resize each image of
writing trajectory to a 28 × 28 thumbnail for both training and
inference phases. To train the CNN classifier, we calculate the con-
volutions twice to get 64 feature maps, and compress that data
with a subsampling process. The subsampled feature maps are then
flattened to be a fully connected neural network and trained with
the input images until it converges. A similar process undergoes
for inference, and the output is the one-hot code among the letter
alphabet.

6.2 Augmenting the Training Data

We augment the training dataset by pre-training the CNN with
printed letters of different fonts. We use all the default 138 font
files provided by Windows 10 and 62 online files of handwriting
fonts to generate 200 training samples for each letter. To better
mimic the possible distortions of handwriting trajectories being
translated from magnetometer readings, we randomly rotate, shift,
shear and zoom each sample, before applying them for training.
Note that such training is an one-time effort and could be done
by the attacker offline, and there is hence no extra cost for the
attacker at run-time. This pre-trained CNN model is then used
to take inputs of magnetometer readings for further training, as
described in Section 6.1.
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7 PERFORMANCE EVALUATION

We evaluate the performance of MagHacker in recognizing the
handwriting of five graduate student volunteers with different writ-
ing patterns and habits. All experiments are being conducted in a
10m×10m office. Every student volunteer, as shown in Figure 14,
uses a stylus pen to write English letters over the LCD screen of a
tablet, and a smartphone (iPhone Xs or Google Pixel 2 XL) is then
placed nearby for eavesdropping. The size of letters being written
is 2cm×2cm4, and the distance between the eavesdropping device
and the victim device varies between 5cm and 20cm5. Since the
eavesdropping device does not produce any audible sound, screen
display or disturbance to the victim device, in practice it could be
casually placed by the attacker without producing any vigilance of
the victim.

Figure 14: Experiment setup

In each experiment, the volunteer starts holding the stylus pen
with a random orientation and then consecutively writes three
English letters in the form of L1L2L1, where both L1 and L2 iterate
through the alphabet and each three-letter series is repetitively
written for five times. In this way, every student volunteer cov-
ers all the possible transitions between letters, and contributes
26 × 26 × 3 × 5 = 10, 140 handwriting trajectories of different let-
ters. Writing trajectories of uppercase and lowercase letters are
separately collected.

All the magnetometer readings are transmitted to a desktop PC
for data processing and recognition. For each student volunteer,
we use the other four volunteers’ handwriting trajectories as the
training data to train the CNN classifier using the Keras package
of Tensorflow [35] and run it on Ubuntu 18.04. Then, we use the
classifier to recognize this student volunteer’s handwriting. The
experiment result is averaged over the five volunteers.

7.1 Performance of Letter Segmentation

According to Section 4, the performance of letter segmentation
in MagHacker is determined by whether the transition periods
between letters can be completely removed from the writing tra-
jectories. For example, compared with to ideal segmentation over

4This size matches most cases of handwriting inputs using stylus pens. For example,
iPhone Xs uses the bottom half of screen area for handwriting input, with a size of
6cm×7cm. Most mobile tablets (e.g., Microsoft Surface Pro), on the other hand, require
the minimum size of handwritten letters to be large enough for accurate handwriting
recognition.
5Such distance is measured between the eavesdropping device’s magnetometer and
the center of letter being written on the victim device.

(a) Ideal segmentation (b) Imperfect segmentation

Figure 15: Illustration of practical letter segmentation. Lines

in red indicate the transition between letters that should be

removed from writing trajectories.

(a) Lowercase letters (b) Uppercase letters

Figure 16: Errors of Letter Segmentation

the three-letter series ‘BBB’ in Figure 15(a), the practical segmenta-
tion results as shown in Figure 15(b) could be imperfect in some
cases, and the remaining magnetometer readings during transitions
between letters may lead to wrong recognitions of letters.

To evaluate the performance of letter segmentation, we compare
the results of letter segmentation in MagHacker with those of ideal
segmentation, and compute the segmentation errors as the percent-
age of the difference between the two. To obtain magnetometer
readings with ideal segmentation, we manually monitor and record
the starting and ending timestamps for every letter that the student
volunteers are writing.

The average errors when segmenting different three-letter series
are shown in Figure 16. For example, the number at ‘c’ in x-axis and
‘w’ in y-axis indicates the error when segmenting the three-letter
series ‘cwc’. From Figure 16 we can see that, our proposed approach
to letter segmentation can correctly identify letter boundaries and
remove transition periods in most cases, and the average segmenta-
tion errors for lowercase and uppercase letters are 3.51% and 3.77%,
respectively.

On the other hand, segmentation errors are more likely to occur
in transition between certain letters, due to the specific shapes of
these letters. For example, when transiting from ‘c’ to ‘e’, people
tend to move the pen directly from the end of ‘c’ to the start of
‘e’ and hence make it difficult to find letter boundaries. Similarly,
when transiting from ‘S’ to ‘I’, the end of hand motion in transition
and the first vertical stroke in writing ‘I’ are usually connected
and hard to be distinguished from each other. Nevertheless, these
special cases are very few and have negligible impact on the overall
performance of MagHacker’s letter segmentation.
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(a) Recognizing lowercase letters (b) Recognizing uppercase letters

Figure 17: Recognition accuracy with ideal segmentation

(a) Recognizing lowercase letters (b) Recognizing uppercase letters

Figure 18: MagHacker’s eavesdropping accuracy

7.2 Performance of Coordinate
Transformation

The eavesdropping accuracy of MagHacker is mainly determined
by the performance of our proposed coordinate transformation ap-
proach in Section 5. We evaluate its performance by examining the
accuracy of recognizing the transformed magnetometer readings
with ideal segmentation. The recognition accuracy for lowercase
and uppercase letters, as shown in Figure 17, is 84.16% and 88.69%,
respectively. Such higher accuracy demonstrates that the distorted
magnetometer readings, in most cases, can be correctly restored to
recognizable writing trajectories after coordinate transformation.

On the other hand, the accuracy of letter recognition is affected
by the ineffective coordinate transformation in certain cases. For
example, when we did not completely remove the hand motion
trajectory between the vertical stroke and the top dot in letter ‘j’,
the shape of ‘j’ looks very differently from the printed letter and
could be easily misclassified. Similarly, the hand motion trajectory
from the end of the first stroke in ‘K’ to its second stroke makes ‘K’
look like "R". Thus, we have low accuracy on both cases.

7.3 Eavesdropping Accuracy

MagHacker’s eavesdropping accuracy may be impaired by the im-
perfect segmentation as shown in Section 7.1 and could hence
be lower from the results being shown in Section 7.2 with ideal
segmentation. However, the results in Figure 18 show that such
performance degradation is very limited: MagHacker’s eavesdrop-
ping accuracy can achieve 77.74% for lowercase letters and 80.10%
for uppercases letters, respectively, and only experiences 6% and
8% degradation due to letter segmentation errors. In particular,
note that most segmentation errors concentrate on recognizing few
letters such as ‘j’, ‘F’ and ‘V’.

Furthermore, Table 3 shows that such eavesdropping accuracy
could be consistently retained over each individual student vol-
unteer, with a variance smaller than 5%. Such variance is mainly
caused by their different writing habits, such as the sequence of
strokes when writing letters, different orientations holding the
stylus pen, and different speeds when writing the same letter. Nev-
ertheless, in the worst case, the eavesdropping accuracy is always
higher than 70% for lowercase letters and 75% for uppercase letters.

Volunteer index 1 2 3 4 5

Lowercase letters 85.60% 73.13% 72.58% 80.08% 77.30%
Uppercase letters 81.76% 75.01% 82.35% 81.90% 79.49%

Table 3: Recognition accuracy on individual student volun-

teers

In practice, humans’ handwriting is mostly limited among le-
gitimate English words, over which only a small portion of let-
ter combinations could possibly appear. Individual errors of letter
recognitions, in such cases, could be corrected by spell checking
that is widely available in editing software (e.g., Microsoft Word).
To investigate such recognition accuracy over legitimate words, we
ask student volunteers to write the top-100 frequently used English
words [5] with different lengths that range between 3 and 7, and
only consider a word as correctly recognized if all its letters are
correctly recognized after spell checking. Experiment results in
Table 4 show that the recognition accuracy over these words ranges
between 75% and 80%. In particular, even when the word length
increases to 7 and greatly increases the difficulty in spell checking
and correction, MagHacker can still have 75% accuracy in recogniz-
ing these long words. These results are important and demonstrate
MagHacker’s potential in eavesdropping and recognizing humans’
handwriting inputs in practical conditions.

Word length 3 4 5 6 7

Accuracy 81.7% 81.7% 80.8% 78.7% 75.1%

Table 4: Recognition accuracy over legitimate words

7.4 Impact of the Eavesdropping Distance

The strength of magnetic field being produced by the stylus pen’s
magnet decays over distance. When the magnet is further away
from the magnetometer, the magnetic field becomes weaker and
hence brings more noise in the magnetometer readings. In all the
experiments above, we fix the distance between the attacking device
and victim device to be 10cm.

On the other hand, when the eavesdropping distance enlarges,
its impact on the eavesdropping accuracy is shown in Figure 19.
MagHacker can effectively retain the eavesdropping accuracy at
70% when the eavesdropping distance enlarges to 15cm. When
the distance further enlarges to 20cm, the decay of magnetic field
strength produces extra errors in letter segmentation, and the eaves-
dropping accuracy drops to 60%. In these cases, MagHacker can
still further improve its recognition accuracy when being applied
among legitimate English words.
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Figure 19: The impact of eavesdropping distance
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Figure 20: The impact of different writing speeds

7.5 Impact of Writing Speed

The duration of writing each letter will significantly impact the
detection of letter boundaries, and the segmentation algorithm may
misdetect the number of letters in a word when people are writing
fast. To evaluate the impact of such different writing speeds on
the eavesdropping accuracy, we let the student volunteers to write
the top-20 frequently used words [5], whose length ranges from
3 to 7, in fast, normal and slow speeds: the fast speed is to write
three letters per two second, the slow speed is to write four letters
per three seconds, and the normal speed is to write one letter per
second.

Experiment results in Figure 20 show that the recognition accu-
racy of MagHacker can be reliably retained to be >75% when the
writing speed does not exceed 1 letter/sec (normal speed), and only
experience significant performance degradation if the handwriting
speed is very fast. In practice, this fast speed already exceeds the
normal range of humans’ handwriting (especially using stylus pens
over LCD screens), and only appears over casual cursive writing or
fast short typing.

7.6 Eavesdropping with Different Positions and
Orientations

As stated in Section 2.3, the magnetometer readings are jointly
determined by the position and orientation of both the magnetome-
ter and the magnet of stylus pen. To evaluate the impact of such
different positions and orientations on the eavesdropping accuracy,
we put the eavesdropping device at 4 different locations and also
change its orientation at each location, as shown in Figure 21(a).
The eavesdropping distance (d) is 10cm and normal writing speed
is used in all cases.

(a) Different positions and orientations
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Figure 21: Eavesdropping with different positions and orien-

tations

The average eavesdropping accuracy over all the three-letter
series, as shown in Figure 21(b), exhibits little variance for both
lowercase and uppercase letters. Noticeable degradation in eaves-
dropping accuracy (around 10%) is only noticed for position A,
where the tablet’s speaker is on the line of sight between the sty-
lus pen and magnetometer and hence disturbs the magnetic field
being produced. The eavesdropping accuracy for all other three
cases, on the other hand, is always higher than 80%. These results
demonstrate that our proposed approach to coordinate projection
and transformation can effectively eliminate the impact of different
magnet orientations.

7.7 Power Consumption of Eavesdropping

MagHacker requires continuous magnetometer readings to acquire
the handwriting trajectories, and hence consumes extra power on
the eavesdropping device. To evaluate such amount of extra power
being consumed by eavesdropping, we keep the eavesdropping
smartphone’s magnetometer running at different sampling rates,
and then compare the speed of power consumption with that of the
smartphone’s idle status. In both cases, the smartphone’s screen
is always on with 50% light intensity, and all the experiments are
done without wireless connections and other background services.
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(b) Google Pixel 2 XL

Figure 22: Power consumption of MagHacker

The experiment results in Figure 22 show that MagHacker is very
energy-efficient. With a fully charged smartphone, continuously
using its magnetometer for 3 hours consumes less than 20% of the
smartphone’s battery power. In particular, such power consumption
varies over different smartphone models, and Figure 22(b) shows
that the Google Pixel 2 XL smartphone running Android 10 has
faster power consumption. The basic reason for such difference
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Figure 23: Other stylus pen models being evaluated

lies in their different mobile OSes being used: accessing magne-
tometer in Android OS has to go through its Sensor service that
is implemented as a mobile middleware, and hence incurs higher
system overhead. Such sensor access over iOS, comparatively, is
more power efficient.

Besides, due to the low sampling rate of magnetometers, the data
size of magnetometer readings is very small and hence incurs a
negligible amount of energy consumption when being transmitted
to the desktop PC for data processing and letter recognition.

7.8 Eavesdropping on Different Stylus Pen
Models

We expect that MagHacker can be generally used to eavesdrop
different stylus pen models. To examine such generality, we also
tested the MagHacker’s eavesdropping accuracy over Adonit Snap
2 Pen [1] and Maglus Pen [2], which are shown in Figure 23 and are
both widely used products on market. As shown in Figure 24, when
the eavesdropping distance is 10cm, the eavesdropping accuracy
over these two stylus pen models is higher than 80% in most cases,
and the average accuracy of these two pen models is 87.11% (Adonit
Snap 2: 84.80% for lowercase and 89.41% for uppercase) and 89.39%
(Maglus: 87.57% for lowercase and 91.20% for uppercase), respec-
tively. These results demonstrate that MagHacker can be generally
applied to different eavesdropping scenarios in practice.
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Figure 24: Accuracy over other stylus pen models

7.9 Eavesdropping in Different Environments

Magnetic field sensing obviously will not be affected by most types
of surrounding objects or obstacles, such as books, clothes, etc. In
our previous experiments, each volunteer collects data at difference
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Figure 25: Eavesdropping in Different Environments

places, e.g. they collect the data on their lab table with different
surrounding objects. These environments are usually surrounded
by different types of electrical devices or other objects with metal
components. We specifically select one volunteer and require him
to wear a metal watch on his left wrist when collecting the first
half of his data in the experiment at the beginning of Section 7.

The eavesdropping accuracy under these environments, as shown
in Figure 25, experiences very little variation. These results demon-
strate that MagHacker has very good adaptability to the environ-
mental dynamics, even with nearby metal objects being present.
In practice, the attacker can place the eavesdropping device under
different covers (e.g., boxes, clothes, paper, etc), and achieve good
concealment without impairing the eavesdropping accuracy.

8 RELATEDWORK

Eavesdropping on handwriting. Early methods suggest to eaves-
drop on humans’ handwriting with hidden cameras [13, 23, 24, 34],
but need to be in the victim’s physical proximity with line of sight.
The real-time processing of the captured images, on the other hand,
also incurs high computing overhead. Research efforts have been
made to eavesdrop on humans’ handwriting bymonitoring the audi-
ble sound or body motions produced by handwriting. For example,
the rubbing sound between the pen nib and the writing surface
could be captured and analyzed for eavesdropping [16, 42], which
however, only works in highly quiet indoor environments with
minimum ambient noise. IMU data readings from a smartwatch
can also be applied to deep learning models for eavesdropping
[22, 37], but requires the smartwatch to be compromised and worn
on the victim’s writing hand. In contrast, MagHacker can effectively
launch the eavesdropping attack from distance, and can ensure the
accuracy of eavesdropping in diverse environmental settings.

Advanced wireless sensing techniques validated that humans’
hand gestures could lead to fluctuations of the wireless signals
on the air, and can hence be derived from signal characteristics,
such as Doppler shift [8, 20, 43] and Channel State Information
(CSI) [28, 41, 44]. These characteristics could be potentially used
for eavesdropping, but can only be captured with specialized RF
hardware that is expensive. They are also susceptible to the environ-
mental dynamics such as channel fading and multipath. In contrast,
MagHacker can be easily executed from commodity mobile devices,
and the magnetic field produced by the magnet has been proved to
be less affected by the surrounding objects.
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Magnetic sensing. Tracking the 2D or 3D movement of a magnet
usually requires multiple magnetometers [11, 12, 19], so as to pre-
cisely estimate all the six degrees of freedom (DOF) in the magnet’s
movement. Existing work on tracking a magnet’s movement with
a single magnetometer, on the other hand, needs help from other
sensors on the victim, such as IMU sensors [40] or a secondary
magnet [6] to provide information about the primary magnet’s
orientation. These existing techniques, hence, cannot be applied
to commodity mobile devices without adding extra hardware or
physically contacting with the victim.

Letter segmentation in handwriting recognition. An intuitive
approach to letter segmentation is to detect vertical movements of
the pen, which only happen in the start and end points of writing
letters [21, 30]. Such detection, however, requires IMU readings that
are usually unavailable from stylus pens. Others use a pre-defined
time window to detect transition between letters [14, 42], but are
very sensitive to the heterogeneous writing habits among humans.
MagHacker, instead, exploits the frequency-domain features of the
magnet’s movement, and can hence be generally applied to humans
with different writing habits.

9 DISCUSSIONS AND FUTUREWORK

In this section, we discuss the potential pitfalls and limitations of
MagHacker, as well as how such eavesdropping attack could be
effectively defended.

The Eavesdropping Distance: The attack design of MagHacker
focuses on scenarios in crowded public places, such as public li-
braries, markets or transportation systems, where people are close
to each other even without any social interaction. In these cases,
MagHacker enables eavesdropping without attracting victim’s at-
tention, because of its adaptability shown in Section 7.9 that brings
great concealment. For example, the eavesdropping device could
be carried by the attacker under cover, or be placed by the attacker
in the public place that he/she shares with the victim (e.g., table).

On the other hand, results in Section 7.4 show that MagHacker’s
eavesdropping accuracy will drop to <70% when the eavesdrop-
ping distance extends to 15-20cm, and hence impairs MagHacker’s
applicability in certain scenarios. The major reason of such drop is
the decay of magnetic field strength over distance. One possibility
of combating such decay is to use multiple magnetometers with
known positions for extra signal calibration, and this can be realized
by using multiple mobile devices owned by the attacker. We will
further explore this possibility in our future work.

Recognizing Non-Letter Characters: Although our evaluations
and discussions in this paper focus on English letters, MagHacker
can be easily extended to recognizing handwritten non-letter char-
acters (e.g., numbers and special characters), by incorporating them
into the training data of CNN classifier. Similarly, MagHacker can
also recognize different English fonts and letters written with dif-
ferent variants (e.g., ‘z’ and ‘7’ with an extra middle stroke).

Recognition of Cursive Writing: The design of MagHacker as-
sumes that humans individually write each letter without cursive
writing. This design can be further extended to recognizing cursive
writing by being applied to existing approaches in handwriting
recognition. For example, a common method to recognize cursive

writing is to train a Hidden Markov Model that segments each
letter into strokes and try different combinations of strokes for
recognition [7, 14, 33], and can be well integrated with the letter
segmentation approach in MagHacker.

Mixing Uppercases and Lowercases: In this paper, we train two
CNN classifiers in MagHacker to recognize uppercase and lower-
case letters, separately. However in practical handwriting, both
uppercase and lowercase letters may appear in the same word,
e.g., the first word in a sentence. Some traditional methods judge
whether a letter is uppercase or lowercase according to its size [17],
but may not be applicable to magnetometer readings that naturally
result in different letter sizes as described in Section 5.3. Instead,
MagHacker can efficiently address such mixed cases via its coor-
dinate transformation and scaling, which remove such impact of
heterogeneous letter sizes.

Eavesdropping from Victim’s Device: If the victim’s mobile de-
vice being used for handwriting with stylus pen (e.g., tablets) has a
built-in magnetometer, MagHacker can also be implemented as a
malware and injected to the victim’s device for eavesdropping via
the local magnetometer. Such eavesdropping can achieve higher
accuracy due to the close distance between the pen magnet and the
magnetometer. Furthermore, accessing the magnetometer, being
similar to IMU sensor access, is unrestricted in most of today’s
mobile OSes (e.g., iOS and Android). Such malware injection, hence,
is much easier and does not need to compromise the victim device’s
OS. We will investigate this attack as our future work.

Possible Defenses: This eavesdropping attack is purely passive
and hence hard to be detected by the victim. The most effective
defense against such eavesdropping attack, instead, is to apply mag-
netic shielding on stylus pens, but may be practically expensive
or greatly increase the pen’s weight. Another alternative is to in-
tentionally obfuscate the magnetic field produced by the stylus
pen’s magnet, so that the trajectories of magnetometer readings
are not recognizable. Being different from existing RF or location
obfuscation techniques [10, 38], alternating the magnetic field is
much harder and requires extra hardware. For example, another
magnet could be attached to the victim’s device for obfuscation but
may affect certain device functionality (e.g., gyroscope sensing). An
electromagnet is a better option, but may be power hungry.

10 CONCLUSION

In this paper, we present MagHacker, a new sensing system that
allows an attacker to precisely eavesdrop humans’ handwriting
with their stylus pens from distance. MagHacker has been proved
to achieve high eavesdropping accuracy over an eavesdropping
distance up to 20cm, and can well adapt to different types of envi-
ronmental dynamics and humans’ writing patterns. MagHacker’s
applicability in practice could be further examined over a larger
variety of English words and with more participants in different
backgrounds, and these examinations could be our future work.
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