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ABSTRACT

Interference could result in significant performance degradation

in WiFi networks. Most existing solutions to interference cancel-

lation require extra RF hardware, which is usually infeasible in

many low-power wireless scenarios. In this paper, we present AiFi,

a new interference cancellation technique that can be applied to

commodity WiFi devices without using any extra RF hardware. The

key idea of AiFi is to retrieve knowledge about interference from

the locally available physical-layer (PHY) information at the WiFi

receiver, including the pilot information (PI) and the channel state

information (CSI). AiFi leverages the power of AI to address the

possible ambiguity when estimating interference from these PHY

information, and incorporates the domain knowledge about WiFi

PHY to minimize the neural network complexity. Experiment re-

sults show that AiFi can correct 80% of bit errors due to interference

and improves the MAC frame reception rate by 18x, with <1ms

latency for interference cancellation in each frame.

CCS CONCEPTS

• Networks→ Network protocols;

KEYWORDS

Interference cancellation, WiFi, Artificial Intelligence, pilot infor-

mation, channel state information

ACM Reference Format:

Ruirong Chen, Kai Huang and Wei Gao. 2022. AiFi: AI-Enabled WiFi In-

terference Cancellation with Commodity PHY-Layer Information. In ACM

Conference on Embedded Networked Sensor Systems (SenSys ’22), November

6–9, 2022, Boston, MA, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3560905.3568537

1 INTRODUCTION

Wireless interference widely exists in today’s WiFi networks when

multiple devices simultaneously transmit in the same unlicensed

WiFi band, and can cause serious network performance degradation

with the growth of wireless device population and contention of

the limited wireless spectrum.

CommodityWiFi networks combat interference using CSMA/CA

[11, 23, 75], which detects channel occupancy via carrier sensing

and avoids interference by postponing transmissions (i.e., backoff) if
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Figure 1: Interference cancellation with commodity PHY in-

formation

the channel is occupied, but introduce a significant delay due to the

long backoff period [50, 61, 77]. Other schemes extend interference

avoidance to different wireless technologies [62, 84], and recent

cross-technology communication techniques reduce the backoff

time by enabling explicit coordination among wireless transmitters

[33, 40, 52, 54]. However, these existing schemes based on clear

channel assessment cannot fully eliminate the extra delay caused

by interference, especially in heavily occupied channels where

many embedded devices concurrently transmit.

Instead, interference cancellation [28, 49, 63] uses additional RF

hardware to probe the interference signal, which is then removed

from the received signal. Similar techniques have also been adopted

for full-duplex radios [6, 10, 17–19, 35]. Such extra RF hardware,

in most cases, involves multiple RF antennas, RF frontends and

PHY-layer controllers. Therefore, adding these extra RF hardware

to wireless devices is expensive and infeasible in many wireless sce-

narios that have strict constraints on the wireless devices’ cost, form

factor and energy consumption, such as ultra-low-power wireless

networks [42, 55, 56, 83], body area networks [7, 58] and industry

IoT networks [3, 46]. Commodity MIMO systems, on the other hand,

cannot be used to provide such extra hardware, because the differ-

ent MIMO antennas are controlled by the same MIMO controller

and can only be all set as Tx or Rx mode at one time. As a result,

most existing schemes use custom RF hardware, which however,

cannot be applied to commodity WiFi devices.

To address this limitation, we envision that a fundamental shift

on the design methodology of interference cancellation is needed:

instead of probing the interference signal on the air using extra RF

hardware, knowledge about interference should be retrieved from

the local PHY information available at commodity WiFi devices.

Such retrieval is possible because the available PHY information,

including the pilot information (PI) [1, 4, 70] and channel state

information (CSI) [1, 48], exhibit identifiable patterns in both time

and frequency domains when interference is present. In particular,

in each pilot subcarrier being used in an OFDM-basedWiFi system1,

1OFDM has been used in all mainstream WiFi networks from 802.11a/g to 802.11ac/ax
[9]. Old standards (e.g., 802.11b), instead, are obsolete and less used in practice [27].
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interference changes the pilot signal’s phase over time from linear to

non-linear. Interference in each data subcarrier, on the other hand,

affects the frequency-domain channel estimation in the subcarrier,

which is represented by CSI in the subcarrier’s frequency band.

Based on this insight, in this paper we present AiFi, a new tech-

nique that only uses commodityWiFi devices’ locally available PHY

information for interference cancellation. As shown in Figure 1, AiFi

first calculates the interference in pilot subcarriers by comparing

the interfered pilot signal’s phase with that of non-interfered pilot

signal. Then, it applies such knowledge about pilot subcarriers’ in-

terference into regression, to estimate and remove the interference

in other data subcarriers. Since the number of WiFi data subcar-

riers is much larger than that of pilot subcarriers2, to ensure the

estimation accuracy, we further use the CSI in data subcarriers to

provide extra frequency-domain information about interference,

and use such information to refine the regression.

The major challenge, however, is the possible ambiguity when

estimating interference from WiFi PHY information. For example,

the phase variation in pilot subcarriers may not uniquely corre-

spond to the interference signal that may have variant amplitudes

over time, and channel estimation provided by CSI could be affected

by channel distortions caused by random noise or device mobility.

Our basic solution to this challenge is to leverage the power of Ar-

tificial Intelligence (AI) and use a neural network (NN) to precisely

identify and eliminate any ambiguity or inaccuracy in interference

estimation and removal. To minimize the NN complexity and meet

the timing constraint at WiFi PHY, we explicitly incorporate the

domain knowledge about WiFi PHY functionality, such as chan-

nel equalization and encoding, as the building blocks in the NN

structure. In this way, we can ensure the quality of NN training by

avoiding redundant NN structures and training confusions.

More specifically, the WiFi PHY operations ensure continuity

across the PI information of different pilot subcarriers, and AiFi uti-

lizes such continuity to perform regression with a deconvolutional

NN. After the interference has been estimated from regression, AiFi

uses fully-connected NNs to mimic the channel equalization pro-

cess in the feature space, to remove the estimated interference from

the received signal. Furthermore, the accuracy of such removal

may be limited when interference is strong and results in very low

signal-to-interference-plus-noise ratio (SINR). In this case, we use a

long short-term memory (LSTM) network to mimic the commodity

WiFi encoder, and further correct data coding errors by restoring

the correlation between data payloads in consecutive data symbols.

In practice, although the required PI and CSI information may

not be accessible on all commodity WiFi devices, they can be made

available on most commodity device models with manageable engi-

neering tweaks or updates on WiFi device drivers or firmware3. As

a result, AiFi can be applied to manyWiFi applications to reduce the

lowest SINR requirement for supporting various modulations un-

der interference, especially low-power wireless applications where

the power-constrained WiFi devices are incapable of combating

interference with increased transmit signal power. Our detailed

contributions are as follows:

2In a 20 MHz channel, 802.11g uses 48 data subcarriers and 4 pilot subcarriers, and
recent 802.11ax uses 234 data subcarriers and 12 pilot subcarriers [9].
3For example, Intel provided a custom driver that allows accessing CSI in the Intel
5300 WiFi chipset [34]. Researchers provided drivers for CSI access on Qualcomm
Atheros WiFi chipsets from hardware registers [80].

• We designed unique NN structures that can precisely esti-

mate interference in each data subcarrier, by only using the

local PHY information at the WiFi receiver.

• Our NN designs can effectively remove interference from

the received WiFi PHY signal, by reflecting WiFi system’s

domain knowledge in NN models.

• Our design of the LSTM network can correct bit errors across

multiple data symbols due to interference, by learning and

restoring the long-term correlation among data payloads in

these symbols.

We implemented AiFi in an 802.11g network and evaluated AiFi

with different interference sources including WiFi, ZigBee, baby

monitors and microwave ovens. The performance of AiFi is also

evaluated over multiple practical wireless applications, including

1) wireless sensing, 2) webpage loading and 3) online gaming. Our

experiment results have the following conclusions:

• AiFi is accurate. AiFi is the first system that achieves the

performance of the best existing interference cancellation

schemes but does not use any extra RF hardware. It can cor-

rect 80% of bit errors due to interference, and improves MAC

frame reception rate (FRR) by up to 18x under interference.

Such improvement reduces the minimally required SINR

for different WiFi data rates by >3dB and can potentially

improve the wireless network performance by >100%.
• AiFi is adaptive. AiFi can well adapt to interference from

different signal sources. Even under highly dynamic envi-

ronmental conditions, it can correct at least 70% of frame

reception errors.

• AiFi is lightweight. AiFi involves the minimal computation

overhead. Its average NN inference time is <1ms per frame,

and meets the timing constraints of many network applica-

tions. It can largely enhance the user’s Quality of Service

(QoS) in these applications.

2 BACKGROUND & MOTIVATION

To better understand the design of AiFi, we first introduce the

background of WiFi PHY information. We then motivate our design

by demonstrating the identifiable patterns of such PHY information

with interference, and the ineffectiveness of using a monolithic NN

to learn the relationship between these patterns and interference.
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Figure 2: Obtaining PHY information in a WiFi frame

2.1 WiFi PHY Information

As shown in Figure 2, when the channel is invariant within the

time duration of a data frame, a WiFi receiver uses the received

long-training-field (LTF) frame preamble to compute the CSI for

each subcarrier as its channel estimation H = Y/X , where X is the

predefined LTF signal and Y is the received LTF signal. Further,

since the channel may vary over time within the frame duration,

theWiFi network embeds a number of pilot subcarriers in each data
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symbol, and measures such time-domain channel variation from

the channel estimations in pilot subcarriers over different symbols.
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Figure 3: Linear phase variations in PI and CSI
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Figure 4: Non-linear phase variation in PI and CSI when in-

terference is present

Since the transmitted signals in each LTF preamble and pilot

subcarrier are pre-defined BPSK bit sequences and are transmitted

with a constant sampling rate, there is always a fixed phase differ-

ence between every two consecutive CSI samples or PI samples in

a clear channel. As a result, the PI’s phase variation over time is

linear as shown in Figure 3(a), and the CSI’s phase variation over

different data subcarriers is also linear as shown in Figure 3(b).

However, when the interference signal I is present, the channel
estimation in PI or CSI is changed as

HI = YI /X = (HX + I )/X = H + I/X , (1)

where H is the channel estimation without interference. The in-

terference’s impact, characterized by I/X , then distorts the phase

variation of PI and CSI to be non-linear, as shown in Figure 4. Other

channel variations caused by practical factors, such as device mo-

bility or multi-path effect, can also introduce such non-linearity.

However, as we will describe later in Section 3, our NN design

in AiFi is able to distinguish between the non-linearity caused by

interference and other practical factors, by using the difference

between interfered and non-interfered WiFi channel estimations in

different environmental conditions as the input to NN models.

Such identifiable patterns in PI and CSI, when interference is

present, motivates our design of AiFi that utilizes these PHY infor-

mation to estimate and remove interference. To precisely estimate

and remove the interference in data subcarriers, AiFi uses neu-

ral networks to adaptively integrate the time-domain information

provided by PI and frequency-domain information provided by CSI.

2.2 Estimating and Removing Interference
using Neural Network

To estimate interference using neural networks, the most straight-

forward approach is to use the available PI and CSI information as

the input to train a monolithic neural network, where the trans-

mitted data payload is being used as the output labels in training.

To verify the effectiveness of such training, we conducted prelimi-

nary experiments by using a 10-layer convolutional NN with the

increasing complexity from 16, 32, 64 to 65,536 layers to learn the

correlation between PI/CSI information and the transmitted signal,

whenWiFi interference is present in the same 2.4 GHz band. Results

in Figure 5 show that, when being operated on a RTX A5000 GPU,

even when a highly complicated NN is being used and results in a

inference latency of >600ms, a very small amount of bit errors can

be corrected. The basic reason of such low performance of using

a monolithic NN is the high uncertainty of the interference signal

and the channel condition that jointly affect the received signal. As

a result, it is common that a monolithic NN is confused and even

does not converge during training.
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Figure 5: Learning interference using a monolithic NN

Based on these results, we expect that a monolithic NN with

much higher representation power is needed to correctly address

the possible randomness and abruptness of interference, but using

such a complicated NN produces unacceptable computing delay

at WiFi devices. Such ineffectiveness of using a monolithic NN,

hence, motivates our design of AiFi that uses domain knowledge

about WiFi PHY to reduce the NN complexity and avoid possible

confusions in NN training.

3 SYSTEM OVERVIEW

As shown in Figure 6, interference cancellation in AiFi builds on the

NN design that is guided by the domain knowledge about WiFi PHY

functionality. More specifically, AiFi first extracts the interference

features from the PI and CSI information at WiFi PHY, and then

uses these features to estimate interference in each data subcarrier

via regression and refinement based on attention NNs [73, 74]. After

that, AiFi removes such interference from the received signal in

two steps. First, it removes the interference in each individual data

subcarrier by using a fully-connected NN to mimic the WiFi PHY’s

channel equalization process in the feature space. Second, it further

recovers data encoding errors across multiple data subcarriers, by

using a LSTM network to mimic WiFi data encoders and restore

the correlation between different subcarriers’ data payloads in the

encoding procedure.

In training, AiFi jointly trains all the involved NN modules in

an end-to-end manner with a unified cross-entropy loss function,

which aims to minimize the errors in the corrected data payloads

after interference cancellation. Its training data is a collection of

interfered WiFi signals with known data payloads: these signals

and their WiFi PHY information are used as model inputs, and

the known data payloads of these signals are be used as output

labels. The training includes interfered signals being collected with

different interference patterns and channel conditions, to ensure

generality and adaptability of the trained NN models.
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Figure 6: AiFi system overview

3.1 Interference Estimation

To estimate interference, we first extract features from PI and CSI

information provided by WiFi PHY. According to Eq. (1), the inter-

ference signal I in a channel is written as

I = (HI − H )X , (2)

where X is the transmitted signal, and HI and H are channel esti-

mations with and without interference. Eq. (2) shows that when X
is known, the interference signal I can be uniquely identified by HI

and H . Hence, for both PI and CSI, AiFi separately uses convolu-

tional NNs to extract features from interfered and non-interfered

channel estimations, and takes their difference as interference fea-

tures without requiring any prior knowledge about the patterns of

interference signals in different domains. These interference fea-

tures, then, reflect the information about the interference signal’s

amplitude and phase in the feature space.

In training, the non-interfered PI and CSI information will be col-

lected from WiFi frames that have a high SINR above 23dB, where

the channel is considered as clear without noticeable interference.

The interfered and non-interfered channel estimations used in train-

ing will be collected in different channel condition settings that are

varied by various practical factors, such as device mobility and the

surrounding environments. In each setting, the interfered and non-

interfered signal samples used in training will be always collected

in pairs, so that their only difference is the interference signal. In

this way, AiFi ensures that the NN models can remove the channel

estimation variations caused by other irrelevant factors from the

extraction of interference features.

Based on this design, even though the training data may not

cover all the possible domains of interference signals, AiFi can effi-

ciently extract interference features, as long as the NN models are

trained to correctly extract features from the non-interfered and in-

terfered channel estimations. Such correctness is ensured due to the

following two reasons. First, the variability of channel estimation is

constrained by WiFi PHY operations such as channel equalization

and is hence smaller than the heterogeneity of interference signals

across different domains. Second, using NN models with sufficient

representation power makes sure that AiFi can precisely capture the

non-linearity in channel estimations, compared to traditional signal

processing methods that are limited to extracting linear features

from channel estimations [41, 45, 66].
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Figure 7: Interference in data subcarriers

In online inference, we use the aggregate of non-interfered chan-

nel estimations collected in different channel conditions, which

were used in training, as the non-interfered CSI and PI information

for interference estimation. Since non-interfered channel estima-

tions mainly contain linear features as shown in Figure 3 and these

linear features have limited variability in different channel condi-

tions, using these features as the reference can still ensure accurate

interference estimation in new domains.

With the interference features extracted from PI, AiFi uses re-

gression to interpolate these interference features into each data

subcarrier. Standard linear regression, however, fails to correctly

capture the non-linear variation of interference over different fre-

quency bands. For example, when the interference’s phase exhibits

non-linear variation between data subcarriers 41 and 48 as shown

in Figure 7(a), using linear regression results in wrong estimation

of interference in these subcarriers, as shown in Figure 7(b).

Interference 
features from PI

Filter

0 0 0 0 0 0 0
0 0 0

0 0 0 0 0 0 0
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0 0 0 0 0 0 0

Intermediate grid

data subcarriers

Output
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Figure 8: Regression NN

Instead, AiFi uses a deconvolutional NN (Regression NN in

Figure 6) for such regression, which reverses the procedure of

convolutional feature extraction process and learns the generic

channel features at data subcarriers to precisely capture their non-

linearity. As shown in Figure 8, we first expand the interference

features to an intermediate grid via zero padding, and then slide
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an 1D filter with trainable parameters over the grid to weigh its

components and generate the output. We set the filter size to be

2, to exploit the continuity in the interference’s phases between

consecutive data subcarriers in commodity WiFi PHY.

However, such interference estimation may not be always accu-

rate, because interference features from PI do not provide frequency-

domain information about interference in data subcarriers. AiFi

uses interference features from CSI to further refine the interfer-

ence estimation, and details of such refinement (Refinement NNs
in Figure 6) are in Section 4.

3.2 Interference Removal

The estimated interference, then, is individually removed from the

received WiFi PHY signal in each data subcarrier. In AiFi, after

being converted to the feature space, the received signal with in-

terference is applied to a fully-connected NN, which mimics the

channel equalization in WiFi PHY for interference removal.

Commodity WiFi adopts Zero-Forcing (ZF) equalization [22, 45]

to address the received signal’s distortions that are produced during

channel propagation, by inversely applying the channel estimation

to the signal. Hence, when the interference is estimated from chan-

nel estimations in PI and CSI, using ZF equalization to remove the

interference is equivalent to subtracting the estimated interference

from the received signal in the frequency domain.

To mimic this equalization in the feature space, AiFi uses a fully-

connected NN to learn the frequency-domain subtraction of the

estimated interference (I ) from the received signal (XI ), by adding

learnable weightsW to such subtraction. The signal after interfer-

ence removal can hence be written as

X = (XI − I ) ·W . (3)

3.3 Data Payload Correction

Due to the limited signal resolution in PI and CSI information,

interference removal described above may not completely remove

the interference, when interference is strong and results in very

low SINR. In these cases, AiFi further mimics the encoding process

in commodity WiFi to correct the decoding errors in data payloads

due to interference.

TheWiFi encoder correlates each input bit with the previous 6 in-

put bits and interleave the bits that are further modulated into data

signals. Similarly, AiFi uses a LSTM network (Payload Correction
NN in Figure 6) to learn the dependencies between consecutive sym-

bols. In this way, AiFi recovers data payload features from errors,

upon detecting contradictions with the learned dependencies.
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Figure 9: Interference estimation via regression from PI

Eventually, AiFi uses a Demodulation NN to replicate the demod-

ulation functionality in WiFi PHY: demodulation at a commodity

WiFi receiver transforms the encoded data signal to data payloads,

Scale + softmax

Key interference 
features

Weight 
matrix ( )

Refined 
interference

PI Features ( )

CSI Features ( )

Figure 10: Feature refinement NN

and AiFi’s Demodulation NN similarly transforms the encoded data

signal features from the Payload Correction NN to data payloads.
Details of such data payload correction are provided in Section 5.

In this way, by incorporating these domain knowledge about WiFi

PHY operations that are independent from the interference signal

into the design of NN models, we ensure that these NN models are

trained to learn how interference impacts WiFi data transmission

and decoding and further how to correctly remove interference

from the received WiFi signal, without assuming any prior knowl-

edge about the interference signal itself. AiFi, hence, can be widely

applied to different application scenarios with different interference

sources, interference signal patterns and strengths. Such generality

will be demonstrated in Section 7.
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Figure 11: Design choices in feature refinement NN

4 REFINING INTERFERENCE ESTIMATION
WITH CSI FEATURES

As shown in Figure 9, interference estimation solely from PI features

may be inaccurate, due to PI features’ limited resolution in the

frequency domain. To further refine such interference estimation

with interference features from CSI, our design in AiFi is inspired

by attention neural networks [73, 74], and aims to enhance the NN

model’s cognitive attention to the important interference features

that are highlighted in the CSI information.

Feature Refinement NNs

Dense

Concatenate & Dense

Key features

Refined interference

Dense Dense

Figure 12: Stacking refinement NNs

To achieve this objective, we train the Refinement NN to learn

a weight matrix that captures the correlation between PI and CSI

interference features. More specifically, as shown in Figure 10, AiFi

takes the PI and CSI interference features as two input masks (M1
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Figure 13: PHY encoder in commodity WiFi

and M2), and learns the weight matrix (W ) by applying softmax

operation on the correlation of these two sets of features as

W = softmax(M1 ·M2/
√
Scale), (4)

where the scaling constant prevents the correlation result grow

large in magnitude and hence pushes the softmax function to a

region that has very small gradient.

This weight matrix is applied to the key features that represent

the interference in the target data subcarrier to refine the estimation

of such interference. In practice, the key features can be either the

PI or CSI interference features, and we experimentally verified that

using PI interference features as the key features reduces 2% extra

bit errors, as shown in Figure 11(a) where Wifi data frames are

transmitted with 4dB SINR.

To ensure sufficient learning power in practice, as shown in Fig-

ure 12, we further stack multiple refinement NNs to intentionally

introduce variation to the input interference features. The outputs

of stacked NNs are concatenated and densed to acquire the refined

interference features. To balance between the estimation accuracy

and NN complexity, we experimentally investigate different num-

bers of feature refinement NNs being stacked. Results in Figure

11(b) suggest that stacking 4 NNs achieves the highest reduction

of bit error rate (BER) from the estimated interference, without

unnecessarily incurring extra computing overhead.

5 CORRECTING DATA PAYLOAD ERRORS

In this section, we present how to correct the decoding errors in

data payloads due to interference, using a LSTM network to mimic

data encoding in commodity WiFi PHY.
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Figure 14: Correcting data payload errors by directly mim-

icking the commodity WiFi PHY encoder

5.1 Payload Correction NN

The PHY encoder in commodity WiFi correlates every input bit

with the previous 6 input bits to output one data payload of two

bits, which is then sent to the RF frontend for transmission onto

the air. Such encoding process can be modeled a state machine

where the payload output of each 6-bit state is jointly determined

by the previous state and current input to the state, as shown in

Figure 13. Then, an intuitive approach to correct bit errors in data

payloads due to interference is to mimic such commodity encoder,

by predicting every data bit from the previous 6 bits in data payload.
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However, directly mimicking the commodity WiFi encoder has

limited capabilities in such error correction. As shown in Figure

14, when the BER caused by interference exceeds 4%, the excessive

amount of bit errors caused by interference cannot be corrected and

quickly reduce the network throughput to 0. This is because the

range of dependency between data payloads in the WiFi encoder is

limited to 6 consecutive bits. The long-term dependencies in data

payloads are simply ignored, despite their importance in identifying

bit errors caused by interference.

Instead, AiFi uses a LSTM network [32, 81] that shares the simi-

lar structure as the state machine in encoder to mimic the encoding

process, as shown in Figure 15. Since a LSTM network memorizes

both the short-term and long-term dependencies between data pay-

loads with a memory cell, it can restore the errors in data payloads

by regression based on such dependencies.
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Figure 16: LSTM design choices

To ensure that the LSTM correctly mimics the WiFi encoding

process, the number of memory cells in the network should be a

multiple of 6. According to our experiment results in Figure 16(a),

the LSTM network achieves the highest BER reduction without in-

curring extra computing latency when memorizing 48 consecutive

bits in data payload.

Data payloadData payload 
features

Representative features

Softmax

0.9

0.1

Classification

1

0

BPSK n=2

1

Figure 17: Demodulation NN design

5.2 Demodulation NN

The LSTM network outputs the corrected data payloads in the fea-

ture space, which needs to be transformed to data bits for WiFi

decoding. We use a Demodulation NN to mimic the WiFi demodu-

lator, which classifies the equalized PHY signal to the data payload

based on the signal’s phase and amplitude.

As shown in Figure 17 where BPSK demodulation is used as an

example, the demodulation NN first compresses the output features
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Figure 19: Patterns of interferences from different sources

from LSTM with convolution layers to acquire n representative

features, where n is the number of possible data payloads that is

determined by the current modulation scheme being used4. Then,

it computes the probability mapping from Softmax, and chooses

the output data payload with the highest probability.

Both the accuracy and computing complexity of data payload

correction depend on the dimension of data payload features. Our

experiment results in Figure 16(b) show that the NN computing

cost linearly increases with more features, but its performance of

BER reduction saturates when the number of features exceeds 300.

6 IMPLEMENTATION

We build NN models in AiFi with standard TensorFlow 2.8.0 [2]

Python APIs. The models are trained with cross-entropy loss func-

tion and ADAM optimizer [44] with the learning rate of 10−4 in
1000 epochs, and the details of NN models are described as follows.

• The feature extraction NN has 3 convolutional layers with

32, 64 and 128 features.

• The Regression NN has 3 convolutional layers with 64, 128

and 256 features, and the output are condensed into an array

of 96 features. Then, 3 deconvolution layers with 256, 128

and 64 features are used to generate output.

• We implement the Refinement NNs using matmul and softmax
functions with 128 features.

• The Interference Removal NN uses 128 features and subtracts

the interfered signal features with ReLu activation function.

• The Payload Correction NN is implemented with a single cell

LSTM network with 300 features.

• The Demodulation NN is implemented with 3 convolutional

layers with 64, 128 and 256 features. The output is passed to

a softmax function, whose output probability is then used

by an argmax function for classification.

We deploy the trained NN models on a PC system running Linux

Ubuntu 18.04, by loading the NN models into the Linux kernel

4In commodity WiFi that uses QAM modulation, this number is 2 for BPSK, 4 for
QPSK, 16 for 16QAM and 64 for 64QAM.

(a) Zigbee (b) Baby Monitor (c) Microwave

Figure 20: Interference sources

through the TensorFlow C APIs. The PHY information and the

received signal from WiFi PHY, then, are transmitted through an

UDP socket in the Linux kernel and can be directly accessed by

AiFi’s NNmodels running on GPU, so as to minimize the end-to-end

latency of interference cancellation at runtime.

To enable interference cancellation for all modulation schemes

being used in WiFi, such as BPSK, QPSK, 16QAM and 64QAM, we

individually train four demodulation NNs with different sizes of

representative features, as described in Section 5.2, and preload

them for online inference.

In practice, the length of a WiFi PHY frame can vary based on

the specific size of data payload being transmitted. To accommodate

WiFi data frames with various lengths, our implementation builds

the NN models in the way that all the data symbols in a frame are

being processed in the NNs as a batch. For example, an 802.11g

frame that has n symbols over 48 data subcarriers is reorganized

into an input matrix with dimensions of n×48, and a batch size of n
is then used.To further speed up the training, in our implementation

we simultaneously feed multiple frames as the input to NNs, with a

bigger batch size ofm × n. Note that in practical TCP transmission,

a TCP receiver window is usually used with a buffer to temporarily

hold the received data. Such buffer is usually big enough to store

multiple received frames, and hence allows AiFi to process multiple

frames in a big batch.

7 PERFORMANCE EVALUATION

As shown in Figure 18, we evaluate AiFi in multiple environments

that result in significantly different interference patterns. Our NN
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Figure 21: BER reduction: the minimum SINR required to reach 1% BER is reduced by >4dB.
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Figure 22: FRR improvement: the minimum SINRs required for different modulations are reduced by >3dB.

models are trained based on data collected in a 20m×20m lab site

shown in Figure 18(a), where we place the wireless transceivers

and interference sources at different locations with variant levels of

transmit power to produce different channel conditions and levels of

SINR. In our evaluations, data collected in the lab site are randomly

split into a training dataset with 80% data and a testing dataset

with 20% data, and all evaluation results are averaged over 100

random splits. In all evaluations, the testing dataset is ensured to be

different from the training dataset. Further, we also evaluated the

performance of AiFi by applying the NN models being trained with

the lab site data to other test sites, including a 5m×3m residence

room shown in Figure 18(b), an outdoor yard shown in Figure 18(c),

and a 15m×1.2m corridor shown in Figure 18(d).

In our experiments, AiFi’s NNmodels are trained using 300kWiFi

data frames transmitted in the 2.4GHz band, when different inter-

ference sources are present and different WiFi modulation schemes

are used. Note that when interference is present, to mitigate its

impact and minimize data decoding errors, WiFi rate adaptation

always reduces the code rate in all transmissions to the lowest 1/2.

Thus, we use the code rate 1/2 in all experiments. NN inference is

then executed on a Dell Precision 7820 tower workstation. For ex-

perimental evaluation and analysis, we leverage the WiFi reference

design on WARP v3 SDR [20] to transmit and receive wireless sig-

nals for both training and testing. However, our evaluation results

can be fully applied to commodity WiFi devices by modifying their

firmware or drivers, without involving extra RF hardware.

We introduce interferences from 1) white Gaussian noise, 2) con-

current WiFi transmissions, 3) commodity Xbee S2C ZigBee trans-

mitters5, 4) an Anmeate SM24 baby monitor and 5) a Westinghouse

WM009 microwave oven, as shown in Figure 20. The interference

patterns from these sources, as shown in Figure 19, are significantly

5https://www.digi.com/resources/documentation/Digidocs/90002002/.We use 4 Zigbee
transmitters with different center frequencies in the same WiFi band to introduce
interference to WiFi. These Zigbee transmitters can interfere 50% bandwidth of a WiFi
channel and hence greatly reduce WiFi performance.

different: interferences from WiFi and ZigBee transmitters cover

fixed bands, the babymonitor transmits a 4MHz Frequency-hopping

spread spectrum (FHSS) signal, and the microwave transmits a con-

tinuous wideband signal that covers >40MHz.

We evaluate AiFi’s performance of interference cancellation by

using bit error rate (BER) and frame reception rate (FRR) as metrics.

The performance of AiFi is compared with the following WiFi

interference cancellation schemes:

• OpenRF [49], which uses MIMO to compute an interference

matrix and avoids such interference by using this matrix to

instruct WiFi beamforming. OpenRF operates with extra

MIMO hardware.

• 802.11n+ [53], which probes the WiFi interference with ex-

tra RF antennas and cancels such interference by computing

the difference in the channel coefficients between MIMO

antennas. 802.11n+ requires additional MIMO antennas to

operate.

• Rodin [14], which detects the frequency-domain location of

narrowband interference and hops the wideband signals to

a new spectrum to avoid interference. Rodin adds additional

RF frontend circuits in order to mitigate the interference.

7.1 BER Reduction and FRR Improvement

First, we evaluate AiFi’s performance of reducing the BER in the

received data frames with interference. The results are averaged

from using all 5 types of interference sources. As shown in Figure

21, with different WiFi modulation schemes, using AiFi always

reduces the minimum SINR required to reach 1% BER by >4dB. In
particular, when higher-order modulations are used, the amount of

correctable bit errors reduces due to WiFi’s higher requirement on

channel quality. On the other hand, when the amount of bit errors

is very small, the percentage of BER reduction quickly drops to 0%.

Similarly, the amount of bit errors caused by interference grows

when interference becomes stronger and SINR correspondingly

becomes lower. Results in Figure 21 show that AiFi can significantly
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Figure 23: Correcting frame errors with different interfer-

ence sources

improve BER in cases of low SINR and strong interference. On

the other hand, when SINR is high, the data bit errors caused by

interference become fewer, but the percentage of corrected bit

errors, in these cases, always remains >50%.
We then evaluate AiFi’s performance in improving the FRR by

correcting frame errors, which is more difficult because a received

data frame is erroneous if any data bit is erroneous. As shown

in Figure 22, AiFi can improve the FRR by up to 18x, and such

FRR improvement reduces the minimally required SINR to achieve

90% FRR by >3dB with all modulation schemes. In practice, such

3dB difference allows using a higher-order modulation6, hence

potentially leading to 100% improvement of WiFi performance

(e.g., by using 16QAM instead of QPSK when SINR is 14-15dB).

In addition, with the FRR improvement, AiFi can also reduce the

MAC-layer delay by avoiding large TCP backoff window and long

DCF backoff timer. Such latency reduction will be further evaluated

with practical applications in Section 8.

We also evaluted AiFi’s performance of correcting frame errors

with different interference sources. As shown in Figure 23(a), AiFi

can achieve similar FRR when different interference sources are

involved, demonstrating that NN designs in AiFi can well adapt to

different interference patterns.
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Figure 24: Comparison with existing schemes

We compared AiFi with the existing interference cancellation

schemes. As shown in Figure 24(a), AiFi achieves the similar per-

formance with the existing schemes that use extra RF hardware,

and Figure 24(b) shows that AiFi reduces the minimally required

SINR to reach 1% BER by >10%. Since AiFi does not use any extra

RF hardware, it can be easily applied to commodity WiFi devices.

7.2 Generality of AiFi

Interference patterns and wireless channel conditions in different

application scenarios and environment settings could be hetero-

geneous. Once AiFi’s NN models have been trained, we expect

6In 802.11 standards, the minimum SINRs for using different modulation schemes are
mostly defined with 3dB intervals. For example, the minimum SINR to use BPSK and
QPSK is 7.7dB and 10.5dB, respectively [72].
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Figure 25: Generality over different interference sources

that they can be generically applied to different scenarios without

having to retrain the models. To verify such generality, we trained

AiFi’s NN models only using interference signals from concurrent

WiFi transmissions and Gaussian white noise in the lab site, and

then applied the trained NN models for interference cancellation

over other types of interference sources and on other test sites.

First, as shown in Figure 25, the trained model achieves similar

FRR when taking signals from different interference sources as

inputs. Second, when we transmit the same QPSK WiFi signal as

interference with a fixed distance of 2m and SINR at 4dB, Figure

26 shows that the interference signal patterns at different test sites

are significantly different. In these cases, as shown in Figure 27, the

trained model exhibits <7% difference in BER reduction at these

different test sites.
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Figure 26: The interference signal patterns, shown as I/Q sig-

nal samples, at different test sites

Based on these results, we conclude that AiFi’s NN designs have

sufficient representation power to learn the underlying invariant

correlation between PI/CSI information and the corresponding

interference signal, which is mainly determined by WiFi PHY oper-

ations instead of environmental conditions. Hence, AiFi has good

generality to be applicable to different wireless scenarios and envi-

ronment settings.

7.3 Performance with Multiple Types of
Co-Existing Interferences

Interference from multiple sources could possibly co-exist. We eval-

uated AiFi’s performance of interference cancellation with multiple

types of interference sources co-exist. Results in Figure 28(a) show

that AiFi can achieve a similar level of performance in such scenar-

ios withmultiple types of interference sources, when the cumulative
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Figure 27: BER reduction at different test sites

SINR of these interference sources varies from 5dB to 20dB. Fur-

thermore, as shown in figure 28(b), even when multiple types of

interference sources co-exist, the FRR improvement achieved by

AiFi can still be up to 390% when SINR is 10dB. Such improvement

is only 2.5% lower than that with a single interference source, as

shown in Figure 23(b). These results, hence, demonstrate that AiFi

can provide high performance of interference cancellation when

multiple types of interference sources co-exist.
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Figure 28: AiFi performance with multiple types of co-

existing interferences

7.4 Impact of Interference in Time and
Frequency Domains

Interferences with the same SINR may impact the WiFi network

in different ways, due to their different characteristics in time and

frequency domains. For example, the interference signal could be

short-time pulses that cover wide bands in the frequency domain,

or continuous waves at few carrier frequencies. To investigate the

impact of such interference’s heterogeneity, besides the practical

interference sources being used above, we train AiFi’s NN models

with completely interfered WiFi QPSK frames in both time and fre-

quency domains, and then test the trained NNmodels with partially

interfered frames in time and frequency domains, by retaining a

fixed 4dB SINR but varying the interference’s time duration and

bandwidth from 10% to 90%, respectively.
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Figure 29: Performance on interferences with heteroge-

neous time and frequency domain characteristics

Experiment results in Figure 29(a) show that when applied to

interferences with heterogeneous time-domain patterns, AiFi’s BER

reduction only exhibits <10% variation. Similarly, low variation is

shown in Figure 29(b) for interference with different frequency-

domain variations. These results further demonstrate AiFi’s adapt-

ability and generality over different interference patterns.
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Figure 30: Performance with different frame lengths

7.5 Impact of Different WiFi Frame Lengths

In practice, AiFi should be able to correct the errors in frames with

different lengths. We conducted experiments to verify this with

different levels of SINR. As shown in Figure 30, when the number

of data symbols in a frame varies from 10 to 100, the achieved FRR

in AiFi has less than 2% variation. Furthermore, Figure 30(b) shows

that AiFi’s performance in FRR improvement only drops by 5%

with the longest frame length, due to the higher chance of burst

interference in a longer data frame.
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Figure 31: Different NN modules’ contributions to bit error

correction

7.6 Contribution from Different NN Modules

To investigate the individual NN modules’ contributions to interfer-

ence cancellation, we calculate the percentage of bit errors corrected

by each individual NN module, by disabling all the other modules

during testing. As shown in Figure 31, the Payload Correction NN

makes the biggest contribution to bit error correction, especially

when high-order modulation (e.g., 64QAM) is used and more data

bits are encoded into one received signal symbol. In these cases,

correcting data bit errors needs more fine-grained investigation

into the interdependency across multiple data bits and this can

only be achieved by the Payload Correction NN. On the other hand,

although the Interference Estimation module only makes <20%
direct contribution to bit error correction, it is still essential to

other NN modules in interference cancellation, because the cor-

rectly extracted features help improve the accuracy of interference

cancellation in other NN modules.

7.7 Latency of NN Inference

To make AiFi applicable to practical WiFi scenarios, we expect that

the NN inference in AiFi is sufficiently lightweight to meet the
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Figure 32: Latency of NN inference

timing constraint in WiFi PHY. In our experiments, we evaluate

the latency of AiFi’s NN inference with different batch sizes and

frame lengths. As shown in Figure 32(a), when the batch size is 1,

it takes an average of 22ms for AiFi to process one data frame, but

when a large batch size of 100 is used, it takes AiFi 72ms to process

100 frames and reduces the per-frame inference latency to 0.72ms.

In practice, such batch frame processing is commonly used in

802.11g/n/ac networks with Automatic Repeat ReQuest (ARQ),

which reduces the network latency by only sending out one ACK

after a batch of buffered frames [5], and the ARQ window size is

usually set as 128 in most Linux systems. The recently proposed

Hybrid-ARQ Protocol (HARQ), on the other hand, disables batch

processing of frames but has only been adopted in cellular networks

[69]. Hence, AiFi’s per-frame processing latency in practical WiFi

systems can be well controlled within 1ms.

Further, we studied the total time for AiFi to correct a failed

frame with different lengths. As shown in Figure 32(b), even when

the frame length increased from 10 symbols to 100 symbols, the

total latency only increased less than 1ms.
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Figure 33: The impact of NN complexity

7.8 Impact of NN Complexity

The complexity of AiFi’s NN models may impact their representa-

tion power and hence affect the accuracy of data payload correction

under dynamic channel conditions. To evaluate such impact of NN

complexity, we apply a scaling factor (SF) on the number of features

in each layer of the AiFi’s NN models7, to vary the NN complexity.

As shown in Figure 33, AiFi’s performance of BER reduction

exhibits 15%-20% reduction under different levels of SINR, when

the complexity of NN models is reduced to 25% (SF=0.25). However,

when SF is larger than 1, further increasing the NN complexity

only results in another 4% improvement on the performance of bit

7In our implementation, Feature Extraction NNs and Interference Removal NNs both
output 128 signal features, and Payload Correction NN and Demodulation NN process
data payloads with 300 features.

error correction. In practical applications, the network users can

flexibly adjust the NN complexity based on the application’s timing

constraint and resource conditions of wireless devices. When the

local computing resources are abundant, the users can opt to use

more complicated NNs for the optimal network performance. On

the other hand, in resource-constrained or delay-sensitive appli-

cations, more lightweight NNs can be used instead to reduce the

latency and resource consumption of AiFi’s NN inference.

8 REAL-WORLD EXPERIMENTATION

In this section, we further examine the applicability of AiFi in

improving the network performance in real-world applications. We

demonstrate that AiFi’s interference cancellation can significantly

enhance the Quality of Service (QoS) in the following applications:

1) wireless sensing; 2) webpage loading; 3) online gaming.

In all applications, our evaluations are performed at the ap-

plication layer by using transport-layer throughput and latency

as metrics. In Linux, we set the TCP window size as 416KB via

the net.ipv4.tcp_rmem command, and retransmission timeout as

200ms via the TCP_RTO_MIN variable.
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Figure 34: Throughput in wireless sensing

8.1 Wireless Sensing

In wireless sensing applications [14, 82], low-cost sensors with

small form factors are deployed in a distributed manner and stream

sensory data to the backend server. In our evaluations, we examined

how AiFi can improve the wireless throughput in sensing appli-

cations, by transmitting 10k images from a Raspberry Pi 4 to our

WiFi receiver under interference with various levels of SINR.

As shown in Figure 34(a), as long as SINR exceeds 6dB, AiFi

can remove the majority of interference and achieves 80% of the

maximum throughput (i.e., the throughput without interference).

Such throughput improvement, as shown in Figure 34(b), is up

to 15x even under strong interference. These results show that

AiFi can enable wireless sensing applications in severely interfered

wireless channels.

8.2 Webpage Loading

Web browsing is one of the most popular application scenarios

using WiFi, and has also become common on mobile and embedded

wireless devices. When the WiFi network transmits at 24Mbps, we

evaluate how AiFi can reduce the latency of webpage loading by

removing the impact of wireless interference. Our evaluation is

performed on multiple web pages with different contents and data

sizes as listed in Table 1.

As shown in Figure 35(a), when the interference is strong and

reduces the FRR to <30%, the HTTP link to the web server cannot

be established, resulting in an indefinitely long latency of webpage
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Figure 35: Latency of webpage loading
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Figure 36: Performance of online gaming

loading. In these cases, interference cancellation in AiFi is able to

transform the webpage loading functionality from impossible to

usable, and the average loading latency is within 30s when FRR is

at 40%. Furthermore, in scenarios with weaker interference, AiFi’s

interference cancellation can reduce the latency of webpage loading

by at least 42%, as shown in Figure 35(b).

Webpage Data size (MB)

Google.com 1.4

Delta.com 6.08

Twitter.com 8.21

Twitch.com 14.81

Table 1: Webpage size

In particular, when the FRR reaches 80%, AiFi can constrain the

latency of webpage loading within 3s, which ensures satisfiable

QoS of web browsing [8, 12, 31].

8.3 Online Gaming

In this section, AiFi takes wireless traffic during online gaming as

inputs, and we evaluate how AiFi reduces the packet loss and data

transmission latency in real-time online gaming. In our evaluations,

we collected the UDP data traffic from League of Legends8 and

Dota29 via Wireshark, and transmit such UDP traffic under various

interference conditions that result in different levels of FRR.

As shown in Figure 36(a), when interference causes >10% packet

loss, AiFi can reduce such amount of packet loss by >63%. In general,
as long as the network FRR is higher than 80%, AiFi can effectively

restrain the packet loss rate within 10% and hence ensures satisfiable

user experience in gaming, according to existing studies about

online games’ requirements on network link stability [13, 15, 16].

8https://www.leagueoflegends.com/
9https://www.dota2.com/home

Meanwhile, the improved performance of frame reception also

leads to a significant reduction on the data transmission latency,

also known as the ping value in online gaming. As shown in Figure

36(b), even with very strong interference that reduces the FRR to

<30% and incurs unacceptable transmission latency, AiFi can always

reduce such latency to <50ms. On the other hand, when the FRR

improves, although using AiFi introduces some extra computing

latency for NN inference, it still provides significant packet loss

reduction, which is critical to good user experience.

9 RELATEDWORK

Collision avoidance. Commodity WiFi implements MAC-layer

CSMA/CA for collision avoidance [11, 23, 75]. Advanced techniques

such as Q-CSMA [26, 60], slotted CSMA [47, 68] and distributed

CSMA [39, 67] reduce the network latency by adapting the backoff

timer, packet sizes and timing constraints. Other researchers insert

custom PHY preambles that can be sensed with a smaller latency,

to avoid interference from different wireless technologies such as

Zigbee [84] and LTE [62]. These approaches, however, introduce

significant delay when the channel is heavily congested. In con-

trast, AiFi completely avoids such delay by performing interference

cancellation in nearly real time.

Cross-technology communication (CTC) [33, 40, 52, 54], on the

other hand, advances collision avoidance by enabling explicit coor-

dination between wireless technologies, but still incurs extra delay

when waiting for an idle channel to exchange control messages,

especially if the channel is intensively occupied.

Interference cancellation. Interference cancellation [28, 49, 63]

removes interference from the received signal, by using RF hard-

ware to probe the interference signal on the air. Other backbone-

assisted networks [30, 53, 86] cancel interference between clients

and WiFi APs by coordinating multiple APs, and full-duplex radios
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[6, 10, 17–19, 35] cancel the transmitted signal as self-interference

from the simultaneously received signal in another antenna. How-

ever, all these techniques build on sensing interference with extra

RF hardware, and cannot be applied to commodity wireless devices.

In contrast, AiFi does not require any extra hardware in WiFi PHY,

allowing easy deployment in commodity WiFi devices.

Zigzag decoding [29], on the other hand, reduces the require-

ment of extra RF hardware, but still requires access to WiFi PHY

to obtain knowledge about the raw received signal. Furthermore,

Zigzag decoding is limited to removing interference signal from

another WiFi transmitter and utilizes the known patterns of the

interfering WiFi signal to achieve lightweight interference cancella-

tion, but it is incapable of canceling interferences from other types

of sources. Similarly, early research efforts on packet recovery are

mostly limited to specific types of networks [24, 38, 79], and exist-

ing successive interference cancellation (SIC) techniques [57, 76]

also build on the prior knowledge about both the transmitted data

signal and the interference signal. In contrast, the NN models in

AIFi are able to remove a large collection of interference signals

with heterogeneous signal patterns, without requiring any prior

knowledge about such patterns of interference signals.

AI-assisted wireless communication. In recent years, research

efforts have been made to utilize modern AI techniques to improve

the performance of wireless communication. In particular, deep

neural networks (DNNs) have been used to develop better encoders

and decoders [36, 37, 43, 78] as the replacement of those being

current used in wireless PHY, in order to better addressing the non-

linearity in channel conditions and the subsequent bit errors caused

by such non-linearity. In contrast, our design of Payload Correction

NN is not a new decoder design and does not modify the WiFi

PHY-layer in anyway, but instead aims to mimic the WiFi PHY’s

decoding operations for efficient bit error correction in software.

Some other techniques use AI tools for more accurate channel

estimation [25, 51, 59, 65, 71], which can contribute to correcting

bit errors caused by interference. Most of these techniques, however,

design custom neural networks based on specific wireless channel

models, and cannot well adapt to the dynamic channel conditions

caused by interference. In contrast, since the Payload Correction

NN in AiFi is trained with the extracted interference features, it can

well adapt to the heterogeneous and dynamic interference patterns

in different scenarios and environment settings.

Researchers have also developed and applied DNN-based en-

coders and decoders to different applications, such as respiration

monitoring [85] and jamming removal [21]. While AiFi similarly

uses the learning power of NNs to better capture the non-linearity

of channel conditions and hence achieve generality across differ-

ent application domains and environment settings, its objective of

interference cancellation is different from the existing work and

it hence has a different requirement of the NN’s generalizability

compared to the existing work. For example, while respiration mon-

itoring requires highly accurate motion tracking to capture each

breath, interference estimation in WiFi does not need to be 100%

accurate, as the possible estimation errors can be further addressed

by Interference Removal and Payload Correction NNs.

10 DISCUSSIONS

Applicability to different WiFi hardware. On most WiFi de-

vices, the PI and CSI information at PHY are stored in hardware

registers for PHY channel equalization and demodulation, and can

hence be accessed from software via custom WiFi drivers that pro-

vide access to these registers. For example, on QualComm Atheros

WiFi chipsets, CSI is stored in the ar9003_hw_set_chain_masks
registers, and can be accessed by reversely engineering the WiFi

firmware [80] without any hardware modification. To that end,

AiFi can be widely deployed to a large collection of commodity

WiFi devices with manageable engineering efforts on WiFi driver

or firmware customization.

Impact of device mobility. As we discussed in Section 2.1, device

mobility could also cause non-linearity in the WiFi PHY informa-

tion, due to the Doppler effect being caused. However, even in

scenarios with very high mobility (e.g., >100 km per hour), the cor-

responding frequency shift caused by device mobility, with theWiFi

carrier frequency at 2.4 GHz, is capped at a few hundreds of hertz.

Such phase shift is much smaller than the smallest data subcarrier

spacing in WiFi (312.5 KHz). Therefore, the phase shift and ampli-

tude change caused by device mobility are relatively minor and can

be efficiently distinguished from those caused by interference by

the NN modules in AiFi.

Acceleration with hardware AI accelerators. In our current im-

plementation, the online inference of AiFi is only executed by CPU.

To meet the more strict timing constraint of delay-sensitive applica-

tions, such as AR/VR, we can leverage the hardware AI accelerators

that have been available on personal wireless devices. For example,

neural processing units (NPU) have been made available on smart-

phones such as Samsung Galaxy S20 and Google Pixel 6, and can

be used to further reduce the latency of AiFi’s online inference.

Applicability to differentwireless technologies. In theory, AiFi

is applicable to any OFDM-based wireless systems, as long as the

required PHY information is available. However, some wireless

systems do not share the same PHY structure or do not provide the

PHY information in the same way. For example, LTE networks do

not use LTF preambles and have different pilot structures. Adopting

AiFi to these systems, hence, requires additional engineering efforts,

based on knowledge about PHY information in these systems.

Online model adaptation. In practice, the wireless channel and

interference signals may be highly variant over time. To better

adapt to such temporal variability, one solution is to adopt active

learning approaches [64] for online NN model adaptation, which

uses the up-to-date PHY information to re-calculate the NN model

weights. Such online model adaptation will be our future work.

11 CONCLUSION

In this paper, we present AiFi, a new wireless system that enables

WiFi interference cancellation at commodity WiFi devices without

requiring any extra RF hardware. The basic rationale of AiFi design

is to extract patterns of interference from the PHY-layer information

that is locally available at WiFi receivers. By levering the power of

AI and designing NNs from domain knowledge of WiFi PHY, AiFi

can reduce 80% of bit errors and improve the FRR by up to 18x.
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