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Abstract
Fine-tuning is the most effective way of adapting pre-trained large language models
(LLMs) to downstream applications. With the fast growth of LLM-enabled AI
applications and democratization of open-souced LLMs, fine-tuning has become
possible for non-expert individuals, but intensively performed LLM fine-tuning
worldwide could result in significantly high energy consumption and carbon foot-
print, which may bring large environmental impact. Mitigating such environmental
impact towards Green AI directly correlates to reducing the FLOPs of fine-tuning,
but existing techniques on efficient LLM fine-tuning can only achieve limited
reduction of such FLOPs, due to their ignorance of the backpropagation cost in
fine-tuning. To address this limitation, in this paper we present GreenTrainer, a
new LLM fine-tuning technique that adaptively evaluates different tensors’ back-
propagation costs and contributions to the fine-tuned model accuracy, to minimize
the fine-tuning cost by selecting the most appropriate set of tensors in training.
Such selection in GreenTrainer is made based on a given objective of FLOPs
reduction, which can flexibly adapt to the carbon footprint in energy supply and
the need in Green AI. Experiment results over multiple open-sourced LLM models
and abstractive summarization datasets show that, compared to fine-tuning the
whole LLM model, GreenTrainer can save up to 64% FLOPs in fine-tuning without
any noticeable model accuracy loss. Compared to the existing fine-tuning tech-
niques such as LoRa, GreenTrainer can achieve up to 4% improvement on model
accuracy with on-par FLOPs reduction. GreenTrainer has been open-sourced at:
https://github.com/pittisl/GreenTrainer.

1 Introduction

epoch 1 epoch 3

backprop trained frozenmodel params

epoch 1 epoch 2 epoch 3

Figure 1: GreenTrainer adaptively se-
lects the trainable portion

Large language models (LLMs), being pre-trained on
large-scale text data, have been used as foundational tools
in generative AI for natural language generations. The
most effective way of adapting LLMs to downstream ap-
plications, such as personal chat bots and podcast sum-
marizers, is to fine-tune a generic LLM using the specific
application data [11]. Intuitively, fine-tuning is less com-
putationally expensive than pre-training due to the smaller
amount of training data, but it may result in significantly
high energy consumption and carbon footprint when being
intensively performed worldwide and hence bring large
environmental impact. In particular, enabled by the de-
mocratization of open-sourced LLMs [8] and convenient APIs of operating these LLMs [32, 41],
even non-expert individuals can easily fine-tune LLMs using a few lines of codes, either for perfor-
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mance enhancement or model personalization [37]. For example, when a LLaMA-13B model [39] is
fine-tuned by 10k users using A100-80GB GPUs, such fine-tuning consumes 6.9× more GPU hours
than pre-training a GPT-3 model [6] with 175B parameters. The amount of energy being consumed
by such fine-tuning, correspondingly, is comparable to those consumed by small towns or even some
underdeveloped countries, and the amount of emitted carbon dioxide is equivalent to 500× of that
produced by a New York-San Francisco round-trip flight [1].

Mitigating such environmental impact towards Green AI directly correlates to reducing the number
of floating operations (FLOPs) of fine-tuning, as FLOPs is a fundamental measure that represents the
amount of computational operations and hence energy consumption in training [36]. Most existing
techniques, however, are limited to optimizing LLM fine-tuning for lower memory consumption
rather than FLOPs reduction [29, 24]. Some other methods reduce the amount of computations by
only fine-tuning specific types of model parameters such as bias [42], LayerNorm and output layer
weights [28], but they significantly impair the model’s expressivity and are only applicable to simple
non-generative learning tasks. Instead, researchers suggested keeping the original model parameters
frozen but injecting additional trainable parameters either to the input [21, 26] or internal layers [23,
17]. Recent LoRA-based methods [16, 43] further reduce the overhead of computing weight updates
for these injected parameters via low-rank approximation. These methods can achieve comparable
accuracy on generative tasks with full fine-tuning. However, they still need to compute the activation
gradients through the whole model, and their FLOPs reduction is hence limited to computations of
weight updates, which are only 25%-33% of the total training FLOPs.

Besides computing weight updates, FLOPs in training are also produced in i) forward propagation
and ii) backward propagation of activation gradients. Since complete forward propagation is essential
to calculate the training loss, we envision that the key to effective FLOPs reduction is to take the
backpropagation cost of activation gradients, which is at least another 33% of the total training FLOPs,
into account and selectively involve only the most appropriate model structures in backpropagation.
The major challenge, however, is that such selective training will nearly always bring model accuracy
loss. Our basic idea to minimize the accuracy loss is to adapt such selection in backpropagation
to a flexible objective of FLOPs reduction, which is determined by the carbon footprint in energy
supply for LLM fine-tuning. For example, when such carbon footprint is low due to more insertion of
renewable energy, a lower objective of FLOPs reduction can be used to retain more model structures
to training and hence retain the training accuracy. On the other hand, high carbon footprint in energy
production could lead to a higher objective of FLOPs reduction for better embracing Green AI.

Based on this idea of adaptive backpropagation, in this paper we present GreenTrainer, a new training
technique for efficient LLM fine-tuning with the minimum accuracy loss. As shown in Figure
1, given an objective of FLOPs reduction, GreenTrainer adaptively selects the most appropriate
set of trainable neural network (NN) tensors at run-time, based on evaluation of different tensors’
importance in training. Such importance evaluation is difficult because NN tensors do not directly
associate with any input data variables or intermediate features, and most attribution techniques
[38, 15] that evaluate feature importance are hence not applicable. Traditional approaches based on
weight magnitudes [22], random perturbations [5], and gating functions [14], on the other hand, are
either inaccurate or computationally expensive for LLMs. Instead, our approach is to follow a similar
rationale with current attribution techniques that measures the importance of an input data variable
as the accumulation of relevant gradients, to evaluate tensor importance as the cumulative gradient
changes of its weight updates in training. In this way, we ensure that selected tensors will make the
maximum contribution to reducing the training loss.

Another challenge is how to precisely profile the training FLOPs of different tensor selections. Due
to the interdependency between different tensors, their total FLOPs in training is usually not equal
to the summation of their individual training FLOPs. Such interdependency is determined by the
backpropagation characteristics of the specific NN operators connected to each tensor, but existing
FLOPs models cannot link NN operators to tensors based on the computing flow of backpropagation.
To tackle this challenge, we build a new FLOPs model that incorporates the relations between tensors
and NN operations into profiling of training FLOPs. Based on this model, we develop a dynamic
programming (DP) algorithm that can find the nearly optimal tensor selection from an exponential
number of possibilities (e.g., 2515 for 515 tensors in OPT-2.7B model [44]), with negligible computing
overhead.

We evaluated the training performance of GreenTrainer with three open-sourced LLMs, namely
OPT [44], BLOOMZ [30] and FLAN-T5 [10], on text generation datasets including SciTLDR [7]
and DialogSum [9]. Our experiment results show that GreenTrainer can save up to 64% training

2



FLOPs compared to full LLM fine-tuning, without any noticeable accuracy loss. In some cases,
GreenTrainer can even improve the model accuracy compared to that of full fine-tuning, by removing
model redundancy and hence mitigating the model overfitting. Compared to existing fine-tuning
techniques such as Prefix Tuning [23] and LoRA [16], GreenTrainer can improve the model accuracy
by 4%, with the same amount of FLOPs reduction, and also provides users with the flexibility to
balance between the training accuracy and cost depending on the specific needs of green AI.

2 Background & Motivation

2.1 Transformer Architectures for Text Generation

Current LLMs are stacked by transformer blocks [40], each of which contains a Multi-Head Attention
(MHA) layer, LayerNorms [4], and a Feed-Forward Network (FFN) with two dense layers. Given an
input sequence X ∈ Rn×d with n tokens, the MHA separately projects all the tokens into a (Q,K, V )

space h times, using h suites of trainable projectors (W
(i)
Q ,W

(i)
K ,W

(i)
V )i=1,...,h. Each projection

fi : Rn×d → Rn× d
h is defined as:

Qi,Ki, Vi = XW
(i)
Q , XW

(i)
K , XW

(i)
V . (1)

The output (Qi,Ki, Vi) then performs attention mechanisms to produce Oi by weighting Vi with the
attention scores between Qi and Ki. The MHA’s final output is obtained by concatenating each Oi,
following a linear projection g : Rn×d → Rn×d with a trainable projector Wo:

Oi = Softmax
(
QiK

⊤
i /

√
d/h

)
Vi, MHAout = Concat(O1, O2, ..., Oh)Wo. (2)

Due to their auto-regressive nature, LLMs can only generate a single output token in each forward
pass, which is inefficient in training. Instead, LLMs adopt the teacher-forcing method [19] to generate
the entire sequence of output tokens in a single forward pass. Specifically, causal masks are applied to
MHA’s attention scores, so that each output token can be predicted from the label tokens at previous
positions. With this technique, when being fine-tuned, LLMs can be trained in a standard way like
any feed-forward models.

2.2 The Need for Adaptive Backpropagation

By stacking a sufficient number of large transformer blocks, pre-trained LLMs can capture general
language patterns and world knowledge. However, when being fine-tuned for a downstream task,
they are usually over-parameterized because only part of the world knowledge they learned is useful
for the target task. In these cases, only involving some of the model’s substructures into fine-tuning
could have little impact on the model accuracy, but significantly reduces the amount of computations.

Trainable
substructure

OPT-2.7B FLAN-T5-3B

FLOPs (×1015) Acc. (%) FLOPs (×1015) Acc. (%)
All params 262.0 23.6 135.7 46.5
Last 2 layers 181.6 (31%↓) 20.8 46.1 (66%↓) 39.2
Decoder prefix 174.7 (33%↓) 13.4 55.3 (60%↓) 37.6
(WQ,WV ) 174.7 (33%↓) 23.8 90.5 (33%↓) 44.7

Table 1: Fine-tuning different substructures of OPT-2.7B and FLAN-T5-3B LLMs on the DialogSum
dataset (ROUGE-1 score on the test set is used as the accuracy metric)

Existing work has made attempts with fixed selections of some NN components, such as the last 2
layers, decoder prefixes [23], and linear projectors (WQ,WV ) [16], to be involved in fine-tuning.
However, due to the interdependencies of NN parameters [18], using such fixed selections for fine-
tuning will significantly impair the trained model’s accuracy. As shown in Table 1, solely fine-tuning
either the last 2 layers or decoder prefixes leads to up to 10 % accuracy drop compared to full
fine-tuning. The major reason is that the nearby NN substructures that have interdependencies with
the fixed selections have been excluded from fine-tuning, and hence become inconsistent with those
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selected substructures. Increasing the density of selected substructures, such as including all the
linear projectors (WQ,WV ), could mitigate the model accuracy loss caused by such inconsistency,
but can only save at most 33% FLOPs due to backpropagating activation gradients through all the
transformer blocks. Some naive methods of dynamic selections, such as progressively expanding the
trainable portion from the last layer, have the similar limitation in FLOPs reduction.

The deficiency of these existing methods motivates us to enforce more flexible and adaptive selection
of LLM substructures in backpropagation. In GreenTrainer, we develop a tensor importance metric
that incorporates parameter dependencies to evaluate how fine-tuning each tensor contributes to the
trained model’s accuracy at runtime. Knowledge about such tensor importance, then, allows us to
achieve the desired FLOPS reduction while maximizing the model accuracy.

2.3 FLOPs Model of Backpropagation

The design of GreenTrainer relies on proper calculation of the selected model substructures’ back-
propagation FLOPs, which can be decomposed into two parts using the chain rule. For example, as
shown in Figure 2, when training a 4-layer dense NN without bias, each layer computes i) dyi as the
loss L’s gradient w.r.t the activation yi, and ii) dwi as the loss gradient w.r.t weight Wi, such that

dyi =
∂L

∂yi
=

∂L

∂yi+1
W⊤

i = dyi+1W
⊤
i , dwi =

∂L

∂Wi
= y⊤i

∂L

∂yi+1
= y⊤i dyi+1, (3)

and the corresponding amount of FLOPs for computing dyi and dwi can be denoted as tdyi
and tdwi

,
respectively.

(dyi,dwi) can be computed from the upstream (dyi+1,dwi+1). In particular, even if a layer is not
selected in fine-tuning, it still needs to compute and pass error gradients (dyi) to the downstream
layers. Hence, the amount of computations in backpropagation do not only depend on the selected
layers, but also depends on some unselected layers. For example, if only Layer 2 is trainable and all
other layers are frozen, the total FLOPs for backpropagation includes i) the FLOPs of computing dw2

and i) the FLOPs of computing dy3 and dy4. Due to the generality of the chain rule, such rationale
of FLOPs calculation is also applicable to other types of NN layers.

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4 PredictionInput data

Label

forward
backward

dy4dy3dy2

dw1 dw2 dw3 dw4

y2y1 y3 y4

Figure 2: Backpropagation of a 4-layer dense NN

Based on this rationale, we can construct FLOPs models for LLM substructures, including MHA and
FFN. However, the layer-level time model is coarse-grained and can lead to inaccurate selection of the
trainable portion in LLM fine-tuning. Some important parameters may be unselected because many
others within the same layer are unimportant. In GreenTrainer, we push the selection granularity to
the tensor level, which can be well-supported by tensorized NN libraries (e.g., TensorFlow [2] and
PyTorch [33]). On the other hand, although the weight-level selection is more fine-grained, it also
requires fine-grained indexing and incurs unnecessarily high overhead.

3 GreenTrainer Method

To reduce the FLOPs of LLM fine-tuning, an intuitive problem formulation is to minimize the FLOPs
while achieving the desired objective of the fine-tuned model accuracy. However, it is generally hard
to determine an appropriate accuracy objective in advance, because some accuracy objectives may
require very intensive training and the accuracy that we can achieve with our FLOPs budget cannot
be pre-estimated before training. Instead, GreenTrainer aims to maximize the training loss reduction
while achieving the desired FLOPs reduction, as formulated below:

max∆loss(m) s.t. Tselective(m) ≤ ρTfull, (4)

where m is a binary selector to be solved for selecting the appropriate set of tensors in fine-tuning.
m parametrizes both the loss reduction (∆loss) and the per-batch FLOPs of training (Tselective), and
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Tselective is constrained to be lower than a user-specified ratio (ρ) of the per-batch training FLOPs
of fine-tuning the whole model (Tfull). For example, ρ = 0.5 means that the FLOPs of fine-tuning
should be reduced to 50% of that in fine-tuning the whole model. In practice, depending on the
specific LLM fine-tuning scenario, the value of ρ can either be preset prior to training, or dynamically
adjusted at runtime in any stage of training.

To clearly identify each tensor’s contribution in fine-tuning, we model ∆loss(m) as the aggregated
importance of the selected tensors in training, and calculate the FLOPs incurred by the selected
tensors using the FLOPs model of backpropagation being described in Section 2.3. With this FLOPs
model, Eq. 4 can be rewritten as:

max ∆loss(m) s.t. Tfp +m · tdw + σ(m) · tdy ≤ ρTfull, (5)

where Tfp indicates the per-batch FLOPs of the forward pass, and each pair of variables in (tdy, tdw)
represents the FLOPs of computing (dy,dw) for the corresponding tensor, respectively. Given
a binary selector m, σ(m) incorporates all the tensors along the backward pass that contribute
to the FLOPs of fine-tuning, by involving in passing the error gradients (dy). For example, if
m = [0, 0, 1, 0, 1, 0, 0], all the tensors that are in deeper layers than the selected tensors are involved
in passing the error gradients, and hence σ(m) = [0, 0, 1, 1, 1, 1, 1].

To ground the above formulation and solve m, GreenTrainer consists of three key components: (i)
Tensor FLOPs Profiling, which calculates the FLOPs of all NN tensors (i.e., tdy and tdw) prior to
training; (ii) Tensor Importance Evaluation, which quantifies the contribution of updating each NN
tensor to the training quality at runtime; (iii) Tensor Selector, which grounds the tensor selection
problem using tensors’ FLOPs and importances, and provides solutions via dynamic programming at
runtime.

3.1 Tensor FLOPs Profiling

Standard NN profilers, such as the Torch Profiler [33], can measure the execution FLOPs of individual
NN operators, such as matrix multiplication and convolution. However, such profiling of NN operators
cannot be directly linked to the corresponding NN tensors that participate in these operations. In
other words, when a set of selected tensors is trained, the training FLOPs of backpropagation are not
equal to the summation of individual tensors’ backpropagtion FLOPs.

To address this limitation, our approach consists of two steps. First, we convert the layer-based
NN structure of LLMs into a tensor-level computing graph, which retains the execution order of
all tensors’ involvements in training. Then, we extract the related backpropagation operators of
each tensor, and derive each tensor i’s FLOPs in backpropagation (tdyi

and tdwi
) by matching and

aggregating the FLOPs of these NN operators. For example in Figure 3, the training of each linear
projector (Q, K and V ) in an MHA layer should be executed after its corresponding bias tensor’s
training. Training each linear projector, then, will involve two matrix multiplication operators, whose
FLOPs in backpropagation will be aggregated. We categorize such rules of matching and aggregation
by the type of LLM layers where tensors are located, as described below.

Input Embed. 
Tensor Projector Q Projector K Projector VBias Bias Output Embed. 

Tensor

0, 0

Tensors in MHA layer in 1st block

Tensor-level 
Graph:

Tensor FLOPs 
𝑡𝑡𝑑𝑑𝑑𝑑, 𝑡𝑡𝑑𝑑𝑑𝑑 : 𝑇𝑇,𝑇𝑇 0,𝑇𝑇𝑇 𝑇𝑇,𝑇𝑇 0,𝑇𝑇𝑇 𝑇𝑇 + 𝑇𝑇att,𝑇𝑇 ∑𝑡𝑡𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇

variable 
assign.

Related 
Backprop Ops:

matmul_1
matmul_2

matmul_3
matmul_4add_1 add_2 matmul_5

matmul_6
matmul_{N-1}
matmul_{N}

Match & Agg. 
FLOPs

❹

❶

❷

❸

Backprop direction

Figure 3: An sample workflow of tensor FLOPs profiling
Input & output embedding layers. The input embedding layer contains a trainable embedding
tensor that maps each raw token into a dense representation through efficient lookup operations.
Given the activation gradient dyi+1 from upstream layers, deriving the update dwi of this embedding
tensor only involves variable assignment without any heavy computations. Hence, we can safely
consider tdwi

≈ 0 for any tensor i. Specifically, if a raw token is mapped to the k-th vector in the
embedding tensor during the forward pass, then during backpropagation, dyi+1 from the upstream
will be only assigned to k-th row of dwi, such that

dwi[s] = dyi+1 if s = k, else 0. (6)
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Since the input layer doesn’t propagate activation gradients, we can also conclude that its tdy is 0.

Reversely, the output embedding layer projects each token back to the probability space by multiplying
its trainable tensor with the token vector. Intuitively, its (tdy, tdw) can be derived in the same way as
we did for the dense NN layer in Eq. (3). However, in most LLMs, the output embedding layer shares
the same trainable tensor with the input embedding layer. This implies that if the output embedding
is trainable, then the input embedding will also be involved in training. To reflect this correlation, all
the tdy from the LLM’s output, up to the input embedding layer, should be accumulated to the tdy of
the output embedding tensor, while its tdw remains unchanged.

Multi-Head Attention (MHA) layer. As described in Section 2.2, a MHA layer contains multiple
linear projectors as trainable tensors, and their FLOPs in training can be generally derived in the
same way as we did with the dense NN layer. In addition, some LLMs such as OPT also include bias
as another type of trainable tensor after such projection. In this case, based on the chain rule, the
backpropagation of bias is computed as:SS

dyi = dyi+1, dwi = 1⊤dyi+1, (7)

which indicates that tdy for bias is 0 since dyi is identically passed from dyi+1. tdw of bias can be
derived as the FLOPs of adding up the elements in dyi+1, along every embedding feature channel.

The attention mechanism in Eq. (2) is backpropagated prior to the projectors. If any of these
projectors are involved in training, the attention’s backpropagation FLOPs must be also calculated.
To do this, we accumulate such FLOPs to the corresponding projector tensor (WV )’s tdy .

LayerNorm. Given a token, LayerNorm first normalizes its features and then uses two trainable
tensors γ and β to element-wise multiply with and add to the token, respectively. The operations of
multiplication and addition are similar to those in the dense NN layer, and so its FLOPs can also
be calculated in the similar way. However, the backpropagation FLOPs of normalization operators
should be accumulated to the previous tensor’s tdy . That means if any tensors in the previous layers
are trained, the FLOPs of propagating the normalization operators should be also included when
calculating the FLOPs of the current layer.

Feed-Forward Network (FFN). In the FFN, there is a nonlinear activation function between two
dense layers. Following the same method of calculating LayerNorm’s FLOPs, we accumulate the
FLOPs of propagating through this activation function to the bias tensor’s tdy in the first dense layer.

3.2 Tensor Importance Evaluation

Generally speaking, a tensor’s importance in training can be estimated as the summation of the
importances of all its weights. In training, since the model weights are iteratively updated to minimize
the training loss, an intuitive approach to evaluating the importance of a weight update in a given
iteration is to undo this update and check how the training loss increases back:

∆L = L(w)− L(w +∆w), (8)

so that a higher value of ∆L means this update is more important and the corresponding weight
should be selected for fine-tuning. However, repeatedly applying this approach to every NN weight
is expensive due to the large number of weights in LLMs. Instead, our approach is to estimate
the importance of all the NN weights in one shot by utilizing the information available in the
backpropagation procedure. More specifically, we compute the importance of each weight by
smoothing the undo operation described above and computing the loss gradients with respect to
the updates that correspond to all the weights. Letting the multiplicative c ∈ [0, 1]M denote the
continuous undo operation for all the M weights in the model, we can compute the loss gradient with
respect to c as

−∂L(w + c⊙∆w)

∂c
= − ∆w ⊙ ∂L(u)

∂u

∣∣∣∣
u=w+c⊙∆w

, (9)

where ⊙ denotes element-wise multiplication. When c = 0, Eq. (9) becomes an importance vector
where each element corresponds to a model weight. Since the loss gradient is parametrized by all the
model weights, the weight importances calculated in this way implicitly incorporate the impact of
weight dependencies. A tensor k’s importance is then calculated as

Ik = −
∑

i
∆w

(k)
i

∂L

∂w
(k)
i

. (10)
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In some cases, when the training process encounters divergence, both the values of the gradients and
the calculated tensor importances in Eq. (10) could become very large, eventually leading to overflow
when using these importance values for deciding tensor selection in Eq. (5). To address this issue,
we could further scale all the tensor importance by the maximum amplitude to improve numerical
stability.

Reducing memory usage. Our approach to importance evaluation requires caching all the previous
model weights and the current gradients, in order to compute Eq. (10). However, doing so significantly
increases the GPU memory consumption, especially for modern LLMs with billions of model weights.
To reduce such GPU memory usage, we observe that our problem formulation in Eq. (5) will prevent
tensors in early layers to be selected for training, due to the high costs of propagating their activation
gradients in backpropagation. Hence, we could safely exclude these tensors from the trainable
portion of LLM fine-tuning and save a significant amount of GPU memory. More specifically, the
backpropagation during tensor importance evaluation can be early stopped at a certain tensor k, such
that ∑

i=k−1,...,N

tdyi < ρTfull ≤
∑

i=k,...,N

tdyi , (11)

i.e., the cumulative FLOPs of all the tensors from 1 to k just exceeds our objective of FLOPs
reduction. As shown in Table 2, by applying such early stopping method, we could proportionally
save GPU memory with respect to the value of ρ, as a smaller value of ρ leads to smaller k and the
backpropagation can hence be stopped earlier. For example, when ρ =50%, 25% of GPU memory
can be saved, and such saving could further increase to 50% when ρ =34%.

Model Full
evaluation

Early-stop
ρ = 34%

Early-stop
ρ = 40%

Early-stop
ρ = 50%

Early-stop
ρ = 60%

OPT-2.7B 10.8 5.5 6.5 8.1 9.7
FLAN-T5-3B 12.0 6.1 7.2 9.0 10.8

Table 2: GPU memory consumption (in GigaBytes) of tensor importance evaluation

3.3 Tensor Selection

Since Eq. (5) is a nonlinear integer programming problem and hence NP-hard, in GreenTrainer we
instead seek for an approximate solution in pseudo-polynomial time using dynamic programming
(DP). Specifically, we decompose the whole problem into subproblems that are constrained by
different depths of backpropagation. These subproblems can be sequentially solved from the easiest
one with the smallest depth of one, by using their recurrence relations.

Subproblem definition. As shown in Figure 4(a), we define each subproblem P [k, t] as to maximize
the cumulative importance of selected tensors when 1) selection is among the top k tensors1 and 2)
backpropagation FLOPs is at most t. DP starts by solving the smallest subproblem P [k = 1, t =
1] and gradually solves larger subproblems based on the results of smaller subproblems and the
recurrence relation of these subproblems, until the target problem P [N,Tfull] is solved.

1 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 ……
1…

𝑘𝑘

𝑁𝑁

… P[ k, t ]
Subproblem 

Table (𝑁𝑁 × 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

backprop depth ≤ k

backprop FLOPs ≤ t

k 1k-1

(a) Subproblem definition

k-1 k-2 k-3 1k

P[k-1, t]

P[k, t] = ?

not
selected

k-1 k-2 k-3 1k

P[k-1, t]

P[k, t] = ?

selected

not selected selected

Case 1:

Case 2:

(b) Finding recurrence relations

Figure 4: Solving the selection problem by DP
1We consider the tensor that is closest to the NN output as the topmost.
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Recurrence relations of subproblems. The recurrence relation between subproblem P [k, t] and
P [k − 1, t] depends on whether we further select the top tensor k from the solution of P [k − 1, t], as
shown in Figure 4(b). Case 1: If the top tensor k is not selected, P [k, t] will fall back to P [k − 1, t],
since the importance of selected tensors will not be further increased. Case 2: If the top tensor k is
selected, then its FLOPs will be included into the solution of P [k, t], no matter which other tensors
are selected. The FLOPs involved with tensor k include 1) the FLOPs to update tensor k and 2) the
FLOPs to pass activation gradients from the closest selected tensor kc, such as tensor k − 3 as shown
in Figure 4(b), to tensor k. This implies that P [k, t] falls back to a previously solved subproblem
P [k − kc, t−∆t], where

∆t = tdwk
+

∑k−1

j=kc

tdyj
. (12)

Since kc is unknown in advance, we backtrace the previously solved subproblems and explore all
the possibilities of kc by reducing the depth of backpropagation from k, and the optimal solution
to P [k, t] is the one with the highest cumulative importance of the selected tensors. Based on this
recurrence relation, we can solve all the subproblems by sequentially traversing the subproblem space.
The time complexity of solving each subproblem is O(N) due to the backtracing in Case 2, and the
overall time complexity of DP algorithm is O(N2Tfull).

Reducing the computational cost. Due to the high volume of FLOPs in LLM fine-tuning, the value
of Tfull could be very large. To reduce the computational cost of DP, we can reduce the subproblem
space by skipping two types of subproblems: 1) invalid ones, whose FLOPs constraint t exceeds
the desired constraint (ρTfull); 2) redundant ones, whose FLOPs to pass activation gradients to
the maximally allowed depth (k) exceeds t. Our preliminary experiment show that, doing so on an
OPT model with ρbp = 50% can reduce the number of subproblems by 5.5× without affecting the
optimality of training.

Besides, to further reduce the number of subproblems, we scale tensors’ FLOPs (tdw, tdy) by
multiplying a factor of Z:

t̃dw = ⌊tdw · Z⌋ , t̃dy = ⌊tdy · Z⌋ , (13)

where Z =
Tq

Tfull
reduces the backropagation FLOPs to a resolution of Tq < Tfull. The overall time

complexity of DP is then reduced to O(N2Tq). On the other hand, such reduced resolution could
increase the ambiguity in DP and affect the training quality. To investigate such tradeoff between
the training quality and cost, we conducted preliminary experiments on multiple LLMs. Results
in Table 3 show that, for both OPT-2.7B and BLOOMZ-3B models, setting Tq = 1e3 reduces the
DP overhead to < 1% without affecting the training quality. Similarly, for FLAN-T5-3B, choosing
Tq = 1e2 can retain good training quality with negligible overhead. On the other hand, when Tq

is too small, the solution of DP could be inaccurate and hence result in ineffective reduction of the
training FLOPs.

Model Tq = 1e1 Tq = 1e2 Tq = 1e3 Tq = 1e4 Tq = 1e5

OPT-2.7B 0.02/64.1/32.0 0.04/47.6/30.1 0.64/49.8/30.7 7.5/50.0/30.9 76.5/50.0/30.9
BLOOMZ-3B 0.0001/33.3/9.30 0.007/45.7/25.2 0.21/49.5/27.2 2.3/49.8/27.1 25.3/50.0/27.1
FLAN-T5-3B 0.04/64.9/36.5 0.25/57.1/36.5 3.5/55.3/36.7 41.8/51.8/36.7 449/50.0/36.7

Table 3: The impact of DP resolution Tq on fine-tuning OPT-2.7B, BLOOMZ-3B, and FLAN-T5-3B
LLMs, on the SciTLDR dataset with ρ = 50%. Each triplet [a/b/c] presents a) the percentage of
wall-clock time incurred by DP compared to full fine-tuning, b) the percentage of FLOPs after
reduction compared to full fine-tuning, and c) the testing ROUGE-1 score, respectively.

4 Experiments

We implemented GreenTrainer in PyTorch and conducted our experiments on a Lambda Cloud
instance with a Nvidia H100 80GB GPU and 24 vCPUs. In our evaluation, we include recently
open-sourced decoder-only LLMs including OPT [44] and BLOOMZ [30], and an encoder-decoder
LLM, namely FLAN-T5 [10]). The number of parameters in these LLMs ranges from 350M to 6.7B,
depending on the specific model variants. Our experiments are conducted using the following two
datasets of abstractive summarization:
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• SciTLDR [7] is a dataset of 5.4K text summaries over 3.2K papers. It contains both
author-written and expert-derived TLDRs, where the latter ones are collected using a novel
annotation protocol that produces high-quality summaries while minimizing the annotation
burden.

• DialogSum [9] is a dialogue summarization dataset, consisting of 13,460 dialogues with
corresponding manually labeled summaries and topics. It has been demonstrated more
challenging than other summarization datasets, such as SAMSum [13] and CNN/Daily [31]
at a similar scale.

Note that, in our evaluations we do not consider non-generative tasks such as sentimental classification,
entailment classification, and extractive QA. The basic reason is that these tasks are too easy for
today’s LLMs, and testing them with LLMs will hence result in exaggerated performance gain over
the baseline.

For OPT and BLOOMZ, we follow GPT2-like prompt structures [34], “[source seq.] TL;DR:”, for
summarization tasks to preprocess all the input data. For FLAN-T5, we adopt the prompt structure
“summarize: [source seq.]”, which is used in the original T5 pre-training. We truncate the source
sequences so that the length of every preprocessed input sequence is within 512 tokens. On the test
data, we use a beam search size of 4, and set the maximum number of generated tokens to 64 for
SciTLDR and 128 for DialogSum. We compare the performance of GreenTrainer (GT) with the
following four baselines:

• Full Fine-Tuning (Full FT) fine-tunes all the LLM parameters and should intuitively
achieve the best accuracy of the trained model.

• Fine-Tuning Top2 (FT-Top2) only fine-tunes the last two layers of the LLM, which typically
include the embedding layer and a LayerNorm. The input and output embedding layers
are tied for OPT and BLOOMZ, but are not tied for FLAN-T5. This naive baseline only
fine-tunes the smallest portion of LLM parameters and is used to identify whether the dataset
is trivial to the LLM.

• Prefix Tuning (Prefix-T) [23] inserts trainable prefixes into each transformer block’s input
sequence while freezing the model parameters. For encoder-decoder LLMs, the trainable
prefixes are only inserted into the decoder blocks.

• LoRA [16] is currently the most popular method for efficient LLM fine-tuning. It uses
low-rank matrix decomposition to reduce the training cost. We apply LoRA to both query
and value projectors, as suggested in [16].

In all experiments, we use a batch size of 4 and fine-tune the model for 5 epochs. We use the AdamW
optimizer [27] at a learning rate of 2× 10−5 with linear schedule and weight decay of 10−2. We use
the ROUGE scores (%R1/R2/RL) [25] on the test datasets as the accuracy metric, and measure both
the Peta-FLOPs (PFLOPs) and wall-clock time as the training cost in each run.

4.1 Training Cost & Accuracy

We first compare the training cost and accuracy of GreenTrainer (GT) with other baseline schemes
on LLMs with 3B parameters, using both datasets. As shown in Table 4, for the OPT-2.7B model,
GT-0.5 can achieve the required objective of FLOPs reduction (50%), with at most 2% accuracy loss
on both datasets, and GT-0.7 can even achieve 0.2%-3% higher ROUGE scores than Full FT. We
hypothesize that GT achieves such accuracy improvement by only fine-tuning the most important
tensors and hence mitigating the overfitting that may exist in Full FT. On the other hand, insufficient
trainable parameters can also lead to underfitting, such that FT-Top2 has significantly lower ROUGE
scores than all other schemes, indicating that the fine-tuning task is non-trivial for the OPT-2.7B
model. Similarly, compared to LoRA and Prefix Tuning, GT-0.7 achieves at least 2% higher accuracy
with the same amount of training FLOPs.

Similarly, for BLOOMZ-3B, GT-0.5 can save 50% training FLOPs and wall-clock time with < 2%
accuracy loss. Compared to Full FT, GT-0.7 achieves the same ROUGE scores on the SciTLDR
dataset, and 4% to 10% higher on the DialogSum dataset. With the same training FLOPs, GT-0.7
has 0.4%-1.4% higher ROUGE scores than the best baseline (LoRA). Note that both datasets are
non-trivial for the BLOOMZ model, since the naive baseline (FT-Top2) still exhibits significant
accuracy loss, and Prefix-T performs much worse than any other baselines on the SciTLDR dataset.
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# Model
& Method

SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL

OPT-2.7B

Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
FT-Top2 29.0 (31%↓) 0.61 (34%↓) 9.1/4.0/7.6 181.6 (31%↓) 3.8 (31%↓) 20.8/7.9/17.5
Prefix-T 27.9 (33%↓) 0.58 (37%↓) 7.6/0.4/6.1 174.7 (33%↓) 3.7 (33%↓) 13.4/3.3/10.9
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.7 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

BLOOMZ-3B

Full FT 47.2 1.0 28.3/12.1/22.5 294.8 6.5 26.1/10.6/21.0
FT-Top2 36.5 (23%↓) 0.75 (25%↓) 23.7/8.8/18.8 227.9 (23%↓) 4.6 (29%↓) 22.1/8.5/17.8
Prefix-T 31.5 (33%↓) 0.68 (34%↓) 6.5/2.2/5.5 196.5 (33%↓) 4.2 (35%↓) 29.6/9.4/24.9
LoRA 31.5 (33%↓) 0.69 (33%↓) 27.4/11.7/21.8 196.5 (33%↓) 4.3 (34%↓) 35.4/14.3/28.6
GT-0.5 23.4 (51%↓) 0.51 (50%↓) 26.7/10.7/21.2 146.4 (50%↓) 3.1 (52%↓) 24.9/9.5/20.0
GT-0.7 32.3 (32%↓) 0.74 (28%↓) 28.0/12.2/22.4 204.7 (31%↓) 4.3 (34%↓) 36.8/14.7/29.4

FLAN-T5-3B

Full FT 21.7 0.64 37.1/18.5/31.7 135.7 4.0 46.5/20.8/38.5
FT-Top2 7.3 (66%↓) 0.21 (67%↓) 36.5/18.4/31.5 46.1 (66%↓) 1.4 (65%↓) 39.2/16.7/32.9
Prefix-T 8.0 (63%↓) 0.23 (64%↓) 36.0/18.2/31.0 55.3 (60%↓) 1.7 (57%↓) 37.6/16.4/32.1
LoRA 14.4 (33%↓) 0.41 (36%↓) 36.6/18.5/31.5 90.5 (33%↓) 2.5 (38%↓) 44.7/19.8/37.1
GT-0.34 7.5 (65%↓) 0.23 (64%↓) 36.4/18.4/31.7 53.5 (61%↓) 1.4 (65%↓) 42.7/18.3/35.1
GT-0.4 10.0 (54%↓) 0.38 (41%↓) 36.7/18.5/31.5 62.5 (54%↓) 2.3 (43%↓) 46.0/20.7/38.1
GT-0.5 12.4 (43%↓) 0.44 (31%↓) 36.3/17.7/30.9 77.6 (43%↓) 2.6 (35%↓) 46.2/20.7/38.1

Table 4: Comparison of the training cost & accuracy in LLM fine-tuning. GreenTrainer with an
objective ρ of FLOPs reduction is denoted as GT-ρ.

The major reason may be that the inserted trainable prefixes break the original prompt structure and
confuse the model on the scientific corpus.

For the FLAN-T5-3B model, we observe that FT-Top2 achieves similar fine-tuning qualities to Full
FT with significant FLOPs reduction, indicating that the SciTLDR dataset is trivial for FLAN-T5.
This is because FLAN-T5 has been instruction-fine-tuned after pre-training, and can potentially have
better zero-shot adaptability. In this case, GT-0.34 can achieve the same training FLOPs and ROUGE
scores by selecting only a small portion of tensors. On the other hand, FT-Top2 loses accuracy
significantly on the DialogSum dataset, but GT-0.4 reduces 54% of training FLOPs and 43% of
wall-clock time without noticeable accuracy loss. GT-0.4 also outperforms LoRA by 1% on ROUGE
scores and reduces 11% more training FLOPs. Compared to Prefix tuning, GT-0.34 achieves 2%-5%
higher ROUGE scores, while reducing the same amount of training FLOPs.

4.2 The Impact of FLOPs Reduction Objective

To better understand how GreenTrainer performs with different objectives of FLOPs reduction, we
vary the value of ρ between 0.36 and 0.8, and compare GreenTrainer with LoRA, which provides the
best training performance among all the baseline schemes, on the OPT-2.7B model. As shown in
Table 5, on the SciTLDR dataset, when the requirement of FLOPs reduction is high and corresponds
to a value of ρ ≤0.4, GreenTrainer outperforms LoRA by achieving 2% higher ROUGE scores and
saving 25% more FLOPs and wall-clock time. On the other hand, when the value of ρ increases to
0.6, GreenTrainer outperforms the Full FT on ROUGE scores by 0.5% and outperforms LoRA by
5.2%, but saves 40% of training FLOPs and 39% of wall-clock time compared to Full FT. Similar
results are also observed on the DialogSum dataset. In summary, with different objectives of FLOPs
reduction, GreenTrainer can always provide better tradeoffs between the training accuracy and cost,
compared to the SOTA baselines.

These results, on the other hand, also demonstrates that GreenTrainer provides great flexibility in
LLM fine-tuning between the training accuracy and cost, by adjusting the value of ρ. The user can
opt to set a low value of ρ (≤0.4) to maximize the FLOPs reduction (>60%) with moderate model
accuracy loss (3%-4% on the two datasets we use). Alternatively, they can use a high value of ρ (≥0.6)

10



Method SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL
Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.36 14.9 (64%↓) 0.32 (65%↓) 4.1/1.7/3.6 92.9 (65%↓) 1.9 (65%↓) 15.7/5.0/13.8
GT-0.4 16.6 (60%↓) 0.36 (61%↓) 28.6/11.6/23.5 103.4 (61%↓) 2.2 (60%↓) 17.9/6.3/15.4
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.6 25.0 (40%↓) 0.56 (39%↓) 33.4/15.3/27.8 156.6 (40%↓) 3.3 (40%↓) 24.0/9.7/19.2
GT-0.7 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6
GT-0.8 33.4 (20%↓) 0.77 (16%↓) 33.1/15.5/27.6 209.6 (20%↓) 4.4 (20%↓) 23.9/9.9/19.1

Table 5: Impact of different objectives of FLOPs reduction on the OPT-2.7B model

to have the same level of FLOPs reduction as that of LoRA, but ensure the minimum model accuracy
loss or even minor model accuracy improvement. We believe that such flexibility is practically
important when fine-tuning LLMs for downstream tasks with different green AI requirements and
constraints.

4.3 Efficacy of Tensor Importance Metrics

The fine-tuning quality of GreenTrainer builds on the effectiveness of tensor importance evaluation.
We compare our metric (∆w ∂L

∂w ) to the magnitude-based metric (∆w) [20] and the gradients-only
metric ( ∂L∂w ) [3], using the OPT-2.7B model with ρ =0.7. As shown in Table 6, with the same
objective of FLOPs reduction, using our metric (∆w ∂L

∂w ) for tensor importance evaluation achieves
the highest model accuracy and outperforms Full FT by 1%-3% on ROUGE scores. This is because
magnitude-based metrics ignore the dependencies of weight updates. Gradient-only metrics, on
the other hand, only contain the direction information about tensor importance but cannot reflect
the intensity of importance. Inaccurate importance measurements will in turn lead to inappropriate
selections of trainable tensors.

Method SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL
Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
GT-0.7 (∆w) 29.4 (30%↓) 0.68 (26%↓) 32.7/15.2/27.2 183.8 (30%↓) 4.0 (27%↓) 24.9/10.2/19.7
GT-0.7 ( ∂L

∂w
) 29.4 (30%↓) 0.67 (27%↓) 32.8/15.1/27.2 184.0 (30%↓) 4.0 (27%↓) 25.0/10.2/20.0

GT-0.7 (∆w ∂L
∂w

) 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

Table 6: Efficacy of Tensor Importance Metrics (OPT-2.7B)

4.4 Impact of LLM Size

A specific type of LLM may contain several variants with different parameter sizes. To study
GreenTrainer’s performance with different LLM sizes, we performed LLM fine-tuning using the OPT
models with parameter sizes, ranging from 350M to 6.7B. As shown in Table 7, even on small models
(OPT-350M), GT-0.5 can save 17%-21% more training FLOPs than LoRA does, while achieving
2%-4% higher accuracy (on SciTDR) or the same accuracy (on DialogSum). When the model size
increases to 2.7B, GT-0.5 outperforms LoRA and GT-0.7 outperforms Full FT on the SciTLDR
dataset. On DialogSum, GT-0.7 performs similarly compared to LoRA. For the OPT-6.7B model2,
GT-0.4 can save 27% more training FLOPs than LoRA does on SciTLDR, while achieving the same
model accuracy, and similar advantages can also be observed when comparing GT-0.5 and GT-0.7
with LoRA. Generally speaking, GreenTrainer’s performance advantage widely applies to LLMs
with different sizes.

2For the OPT-6.7B model, Full FT and GT-0.7 with DialogSum have the out-of-memory issue on the single
H100 GPU.
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# Params
& Method

SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL

OPT-350M

Full FT 5.4 0.15 30.9/13.9/25.7 33.8 0.92 23.2/9.0/18.5
LoRA 3.6 (33%↓) 0.10 (33%↓) 25.9/10.8/20.3 22.5 (33%↓) 0.65 (29%↓) 21.5/7.7/17.3
GT-0.4 2.1 (61%↓) 0.06 (60%↓) 27.7/12.2/23.4 13.3 (61%↓) 0.36 (61%↓) 17.3/5.8/14.6
GT-0.5 2.7 (50%↓) 0.08 (47%↓) 29.9/13.2/24.9 16.7 (51%↓) 0.45 (51%↓) 21.3/7.8/17.3
GT-0.7 3.8 (30%↓) 0.12 (20%↓) 30.6/13.5/25.0 23.6 (30%↓) 0.66 (28%↓) 24.2/9.3/19.3

OPT-1.3B

Full FT 20.8 0.46 32.1/14.3/26.4 130.8 2.9 25.4/10.3/20.2
LoRA 13.9 (33%↓) 0.31 (33%↓) 28.1/11.9/22.0 87.2 (33%↓) 1.9 (34%↓) 24.6/9.9/19.4
GT-0.4 8.2 (61%↓) 0.18 (61%↓) 28.9/11.9/23.8 51.4 (61%↓) 1.1 (62%↓) 16.9/5.7/14.6
GT-0.5 10.3 (50%↓) 0.23 (50%↓) 30.0/12.7/24.5 64.2 (51%↓) 1.4 (51%↓) 20.1/7.4/16.7
GT-0.7 14.5 (30%↓) 0.34 (26%↓) 31.2/14.2/25.8 90.8 (30%↓) 2.0 (31%↓) 24.4/9.7/19.4

OPT-2.7B

Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.4 16.6 (60%↓) 0.36 (61%↓) 28.6/11.6/23.5 103.4 (61%↓) 2.2 (60%↓) 17.9/6.3/15.4
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.7 29.2(30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

OPT-6.7B

Full FT 103.9 5.44 32.9/14.9/27.5 649.9 - -
LoRA 69.3 (33%↓) 1.3 28.4/12.3/22.7 433.3 (33%↓) 8.1 24.9/10.2/19.4
GT-0.4 41.2 (60%↓) 0.9 28.9/11.8/23.4 257.9 (60%↓) 5.2 19.7/7.0/16.3
GT-0.5 50.8 (51%↓) 1.1 30.1/13.0/24.8 331.4 (49%↓) 6.7 21.8/8.5/17.3
GT-0.7 74.8 (28%↓) 1.4 33.1/15.3/27.7 - - -

Table 7: Impact of LLM’s model size

5 Conclusion & Broader Impact

In this paper, we present GreenTrainer, a new fine-tuning technique for LLMs that allows efficient
selection of trainable parameters via adaptive backpropagation, to ensure high training quality while
significantly reducing the computation cost. GreenTrainer can save up to 64% training FLOPs
compared to full fine-tuning without noticeable accuracy loss. Compared to the existing fine-tuning
technique such as Prefix Tuning and LoRA, GreenTrainer can achieve up to 4% accuracy improvement
with the same amount of FLOPs reduction.

Although we target LLM fine-tuning in this paper, the rationale of GreenTrainer’s adaptive backprop-
agation can also be applicable to large generative models in other fields, such as Stable Diffusion
[35] for image generation and PaLM-E [12] for motion planning of multimodal embodied agents.
Extensions to these domains will be our future work.
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